

LECTURE NOTES ON

DATA STRUCTURES

I B.TECH II SEMESTER

(JNTUA-R15)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

Asymptotic NotationNotation?

UNIT-1

Whenever we want to perform analysis of an algorithm, we need to calculate the complexity of

that algorithm. But when we calculate complexity of an algorithm it does not provide exact

amount of resource required. So instead of taking exact amount of resource we represent that

complexity in a general form (Notation) which produces the basic nature of that algorithm. We

use that general form (Notation) for analysis process.

Def:Asymptotic notation of an algorithm is a mathematical representation of its complexity
In asymptotic notation, when we want to represent the complexity of an algorithm, we use only

the most significant terms in the complexity of that algorithm and ignore least significant terms

in the complexity of that algorithm (Here complexity may be Space Complexity or Time

Complexity).

we use THREE types of Asymptotic Notations and those are as follows...

1. Big - Oh (O)

2. Big - Omega (Ω)

3. Big - Theta (Θ)

Big - Oh Notation (O)

Big - Oh notation is used to define the upper bound of an algorithm in terms of Time

Complexity.

That means Big - Oh notation always indicates the maximum time required by an algorithm for

all input values. That means Big - Oh notation describes the worst case of an algorithm time

complexity.

Big - Oh Notation can be defined as follows...

f(n) = O(g(n))

Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-
Axis and time required is on Y-Axis

In above graph after a particular input value n0, always C g(n) is greater than f(n) which indicates
the algorithm's upper bound.

Example

Consider the following f(n) and g(n)...

f(n) = 3n + 2

g(n) = n

Consider function f(n) the time complexity of an algorithm and g(n) is the most significant

term. If f(n) <= C g(n) for all n >= n0, C > 0 and n0 >= 1. Then we can

represent f(n) as O(g(n)).

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

If we want to represent f(n) as O(g(n)) then it must satisfy f(n) <= C x g(n) for all values of C >

0 and n0>= 1
f(n) <= C g(n)

⇒3n + 2 <= C n

Above condition is always TRUE for all values of C = 4 and n >= 2.

By using Big - Oh notation we can represent the time complexity as follows...

3n + 2 = O(n)

Big - Omege Notation (Ω)
Big - Omega notation is used to define the lower bound of an algorithm in terms of Time

Complexity.

That means Big - Omega notation always indicates the minimum time required by an algorithm

for all input values. That means Big - Omega notation describes the best case of an algorithm

time complexity.

Big - Omega Notation can be defined as follows...

f(n) = Ω(g(n))

Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-

Axis and time required is on Y-Axis

In above graph after a particular input value n0, always C x g(n) is less than f(n) which indicates
the algorithm's lower bound.

Example

Consider the following f(n) and g(n)...

f(n) = 3n + 2

g(n) = n
If we want to represent f(n) as Ω(g(n)) then it must satisfy f(n) >= C g(n) for all values of C >

0 and n0>= 1
f(n) >= C g(n)

⇒3n + 2 <= C n

Consider function f(n) the time complexity of an algorithm and g(n) is the most significant

term. If f(n) >= C x g(n) for all n >=

represent f(n) as Ω(g(n)).

n0, C > 0 and n0 >= 1. Then we can

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

Above condition is always TRUE for all values of C = 1 and n >= 1.

By using Big - Omega notation we can represent the time complexity as follows...

3n + 2 = Ω(n)

Big - Theta Notation (Θ)

Big - Theta notation is used to define the average bound of an algorithm in terms of Time

Complexity.

That means Big - Theta notation always indicates the average time required by an algorithm for

all input values. That means Big - Theta notation describes the average case of an algorithm time

complexity.

Big - Theta Notation can be defined as follows...

f(n) = Θ(g(n))

Consider the following graph drawn for the values of f(n) and C g(n) for input (n) value on X-

Axis and time required is on Y-Axis

In above graph after a particular input value n0, always C1 g(n) is less than f(n) and C2 g(n) is
greater than f(n) which indicates the algorithm's average bound.

Example

Consider the following f(n) and g(n)...

f(n) = 3n + 2

g(n) = n

If we want to represent f(n) as Θ(g(n)) then it must satisfy C1 g(n) <= f(n) >= C2 g(n) for all

values of C1, C2 > 0 and n0>= 1
C1 g(n) <= f(n) >= ⇒C2 g(n)
C1 n <= 3n + 2 >= C2 n

Above condition is always TRUE for all values of C1 = 1, C2 = 4 and n >= 1.

By using Big - Theta notation we can represent the time compexity as follows...

3n + 2 = Θ(n)

Consider function f(n) the time complexity of an algorithm and g(n) is the most significant

term. If C1 g(n) <= f(n) >= C2 g(n) for all n >= n0, C1, C2 > 0 and n0 >= 1. Then we can

represent f(n) as Θ(g(n)).

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

ARRAY:-

An array is a group of related same data items that share a common name. For instance, we can

define an array name "salary" to represent a set of salaries of employees. A particular value is

indicated by writing a number of subscript in brackets after the array name.

Ex: salary[10];

The above example represents the salary of the 10 employees. While the complete set of values

is referred to as an array, the individual values are called elements. Arrays are classified into two

types

1. One dimensional array or Single dimensional array

2. Two dimensional array

3. Multidimensional Arrays

SINGLE DIMENSIONAL ARRAYS:-

A list of items can be given one variable name using only one subscript and such a variable is

called a single-subscripted variable or a one-dimensional array.

Declaring an Array:-

Like any other variable, arrays must be declared before they are used.

General form of array declaration is,

data-type variable-name[size];

for example :

int arr[10];

Here int is the data type, arr is the name of the array and 10 is the size of array. It means array arr

can only contain 10 elements of int type. Index of an array starts from 0 to size-1 i.e first element

of arr array will be stored at arr[0] address and last element will occupy arr[9].

Initialization of an Array:-

After an array is declared it must be initialized. Otherwise, it will contain garbage value (any

random value). An array can be initialized at either compile time or at runtime.

Compile time Array initialization:-

Compile time initialization of array elements is same as ordinary variable initialization. The

general form of initialization of array is,

type array-name[size] = { list of values };

int marks[4]={ 67, 87, 56, 77 }; //integer array initialization

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

float area[5]={ 23.4, 6.8, 5.5 }; //float array initialization

int marks[4]={ 67, 87, 56, 77, 59 }; //Compile time error

One important thing to remember is that when you will give more initializer(array elements) than

declared array size than the compiler will give an error.

#include<stdio.h>

#include<conio.h>

void main()

{

int i;

int arr[3]={2,3,4}; //Compile time array initialization

for(i=0 ; i<3 ; i++)

{

printf("%d\t",arr[i]);

}

getch();

}

Output

2 3 4

Runtime Array initialization:-

An array can also be initialized at runtime using scanf() function. This approach is usually used

for initializing large array, or to initialize array with user specified values. Example,

#include<stdio.h>

#include<conio.h>

void main()

{

int arr[4];

int i, j;

printf("Enter array element");

for(i=0;i<4;i++)

{

scanf("%d",&arr[i]); //Run time array initialization

}

for(j=0;j<4;j++)

{

printf("%d\n",arr[j]);

}

getch();

}

//Write a program to read a values and display them

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

#include<stdio.h>

#include<conio.h>

void main()

{

int i,n[5];

clrscr();

printf("enter n values");

for(i=0;i<5;i++)

scanf("%d",&n[i]);

printf("The values are\n");

for(i=0;i<5;i++)

printf("%d\n",n[i]);

}

//Write a program to read up to n values and display them

#include<stdio.h>

#include<conio.h>

void main()

{

int a[32],n,i;

clrscr();

printf("enter n");

scanf("%d",&n);

printf("enter a values");

for(i=0;i<n;i++)

scanf("%d",&a[i]);

printf("output values are\n");

for(i=0;i<n;i++)

printf("%d\n",a[i]);

}

//Write a program to find the smallest number for given numbers

#include<stdio.h>

#include<conio.h>

void main()

{

int a[100],n,i,small,big;

clrscr();

printf("Input range");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("Enter a[%d] value",i);

scanf("%d",&a[i]);

}

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

small=a[0];

for(i=0;i<n;i++)

{

if(a[i]<small)

{

small=a[i];

}

big=a[0];

for(i=0;i<n;i++)

{

if(a[i]>big)

{

big=a[i];

}

}

printf("Small number is=%d",small);

printf("Big number is=%d",big);

}

//Write a program to find the biggest and smallest numbers for given numbers

#include<stdio.h>

#include<conio.h>

void main()

{

int a[12],i,n,big,small;

clrscr();

printf("enter n");

scanf("%d",&n);

printf("enter a values\n");

for(i=0;i<n;i++)//i<=n-1

scanf("%d",&a[i]);

big=small=a[0];

for(i=0;i<n;i++)

{

if(a[i]>big)

{

big=a[i];

}

if(a[i]<small)

{

small=a[i];

}

}

printf("Big=%d Small=%d",big,small);

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

}

//Write a program the given numbers are even or odd

#include<stdio.h>

#include<conio.h>

void main()

{

int a[100],i,n;

clrscr();

printf("Enter n");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("Enter the a[%d] value",i);

scanf("%d",&a[i]);

}

for(i=0;i<n;i++)

{

if(a[i]%2==0)

printf("\n%d is Even number",a[i]);

else

printf("\n%d is Odd number",a[i]);

}

}

//Write a program the given numbers are positive or negative

#include<stdio.h>

#include<conio.h>

void main()

{

int a[100],i,n;

clrscr();

printf("Enter n");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("Enter the a[%d] value",i);

scanf("%d",&a[i]);

}

for(i=0;i<n;i++)

{

if(a[i]<0)

printf("\n%d is negative",a[i]);

else

printf("\n%d is positive",a[i]);

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

}

}

Two dimensional arrays

A list of items can be given one variable name using two subscripts and such a variable is called

a double-subscripted variable or a two-dimensional array. C allows us to define tables by using

two dimensional arrays.

Two-dimensional array is declared as follows,

type array-name[row-size][column-size];

Note: We have not assigned any row value. It means we can initialize any number of rows. But,

we must always specify number of columns, else it will give a compile time error. Here, a 2*3

multi-dimensional matrix is created.

Initializing Two Dimensional Arrays:-

Like the one dimensional arrays may be initialized by following their declaration with a list of

initial values enclosed in braces. For example,

int table[2][3]={0,0,0,1,1,1};

Initialize the elements of the first row to zero and the second row to one. The initialization is

done row by row. The above statement can be equivalently written as

int table[2][3]={{0,0,0},{1,1,1}};

We can also initialize a two dimensional array in the form of a matrix as shown below:

int table[2][3]={

{0,0,0},

{1,1,1}

};

//Write a program to enter a matrix A.

#include<stdio.h>

#include<conio.h>

void main()

{

int a[12][12],ar,ac,r,c;

clrscr();

printf("enter ar ac");

scanf("%d%d",&ar,&ac);

printf("enter a matrix");

for(r=0;r<ar;r++)

{

for(c=0;c<ac;c++)

{

scanf("%d",&a[r][c]);

}

}

printf("a matrix is\n");

for(r=0;r<ar;r++)

{

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

for(c=0;c<ac;c++)

{

printf("%d\t",a[r][c]);

}

printf("\n");

}

}

//Write a program to add the two matrix

#include<stdio.h>

#include<conio.h>

void main()

{

int a[12][12],b[10][12],d[12][10],br,bc,ar,ac,r,c;

clrscr();

printf("enter ar ac br bc");

scanf("%d%d%d%d",&ar,&ac,&br,&bc);

if(ar==ac&&br==bc)

{

printf("enter a matrux");

for(r=0;r<ar;r++)

{

for(c=0;c<ac;c++)

{

scanf("%d",&a[r][c]);

}

}

printf("enter b matrux");

for(r=0;r<br;r++)

{

for(c=0;c<bc;c++)

{

scanf("%d",&b[r][c]);

}

}

for(r=0;r<ar;r++)

{

for(c=0;c<ac;c++)

{

d[r][c]=a[r][c]+b[r][c];

}

}

printf("addition of a & b\n");

for(r=0;r<ar;r++)

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

}

else

{

for(c=0;c<ac;c++)

{

printf("%d\t",d[r][c]);

}

printf("\n");

}

printf("addition is not possible");

}

//Write a program to The multiplication of 2 matrix

#include<stdio.h>

#include<conio.h>

void main()

{

int a[12][12],b[10][12],d[12][10],br,bc,ar,ac,r,c,k;

clrscr();

printf("enter ar ac br bc");

scanf("%d%d%d%d",&ar,&ac,&br,&bc);

if(ar==bc)

{

printf("enter a matrux");

for(r=0;r<ar;r++)

{

for(c=0;c<ac;c++)

{

scanf("%d",&a[r][c]);

}

}

printf("enter b matrux");

for(r=0;r<br;r++)

{

for(c=0;c<bc;c++)

{

scanf("%d",&b[r][c]);

}

}

for(r=0;r<ar;r++) //or bc

{

for(c=0;c<bc;c++) //or ar

{

d[r][c]=0;

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

data_type array_name[size1][size2] ... [sizeN];

data_type: Type of data to be stored in the array.

Here data_type is valid C/C++ data type

array_name: Name of the array

size1, size2, ... ,sizeN: Sizes of the dimensions

for(k=0;k<ar;k++) //or bc

{

d[r][c]=a[r][k]*b[k][c]+d[r][c];

}

}

}

printf("addition of a & b\n");

for(r=0;r<ar;r++)

{

for(c=0;c<ac;c++)

{

printf("%d\t",d[r][c]);

}

printf("\n");

}

}

else

printf("Multiplication is not possible");

}

Multidimensional Arrays

In C/C++, we can define multidimensional arrays in simple words as array of arrays. Data in

multidimensional arrays are stored in tabular form (in row major order).

General form of declaring N-dimensional arrays:

Examples:

Size of multidimensional arrays
Total number of elements that can be stored in a multidimensional array can be calculated by

multiplying the size of all the dimensions.

For example:

The array int x[10][20] can store total (10*20) = 200 elements.

Similarly array int x[5][10][20] can store total (5*10*20) = 1000 elements.

Two dimensional array:

int two_d[10][20];

Three dimensional array:

int three_d[10][20][30];

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

int *p;

p = arr;

// or,

p = &arr[0]; //both the statements are equivalent.

Pointer Arrays

When an array is declared, compiler allocates sufficient amount of memory to contain all the

elements of the array. Base address i.e address of the first element of the array is also allocated

by the compiler.

Suppose we declare an array arr,

int arr[5] = { 1, 2, 3, 4, 5 };

Assuming that the base address of arr is 1000 and each integer requires two bytes, the five

elements will be stored as follows:

Here variable arr will give the base address, which is a constant pointer pointing to the first

element of the array, arr[0]. Hence arr contains the address of arr[0] i.e 1000. In short, arr has

two purpose - it is the name of the array and it acts as a pointer pointing towards the first element

in the array.

arr is equal to &arr[0] by default

We can also declare a pointer of type int to point to the array arr.

Now we can access every element of the array arr using p++ to move from one element to

another.

NOTE: You cannot decrement a pointer once incremented. p-- won't work.

LINKED LIST

Linked list is a special type of data structure where all data elements are linked to one another.

Linked list is the collection of nodes and every nodes contains two parts data part and address

part.

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

Why use Linked List

Suppose you want ot store marks of 50 students, so need to write code like below;

Example

int marks[50];

But some time you need to store more than 50 students marks, in that case you can not increase

memory of array, and some time you need to store less than 50 students marks in this case

extra memory will be wastage. To overcome this problem you need to use Linked List because

in linked list memory will be created at run time.

Advantages of linked list

 Linked List is Dynamic data Structure.

 You can change size of Linked List during program run time.

 Insertion and Deletion Operations are Easier, you can insert any node at any place and also

delete any node easily..

 No memory wastage ,i.e no need to pre-allocate memory

 Faster Access time,can be expanded in constant time without memory overhead

 You can easily implement Linear Data Structures such as Stack,Queue using Linked list

Dis-Advantages of linked list

 Need more memory: For store data in linked list you need more memory space, you need

memory space for both data and address part.

In C, we can represent a node using structures. Below is an example of a linked list node with an

integer data.

// A linked list node

struct Node

{

int data;

struct Node *next;

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

};

Linked lists are classified into 3 types

1. Singly linked list

2.Doubly linked list

3.Circular linked list

4.Doule circular linked list

Singly linked list:-

A singly linked list a linear data structure in which each node contains only one link field.

The following diagram illustrates the singly linked list.

Operations:

The following are the operations of single linked list

1.Traverasing

2. Searching

3.Insertion

4.Deletion

Taversing:-

Traversing the list implies visit each every node in the list from the first node to last node

only once.

Insertion:-

Insertion is an operation to add a node into the list. In a singly linked list, a node can be

inserted at three different locations

 Insertion as first node

 Insertion as last node

Algorithm:

struct node *new_node = start;

printf("\n\nList elements are - \n");

while(new_node != NULL)

{

printf("%d --->",new_node->data);

new_node = new_node->next;

}

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

Algorithm:

struct node *newNode;

newNode = (struct node *)malloc(sizeof(struct node));

newNode->data = 4;

newNode->next = head;

head = newNode;

 Insertion as the specified position

Insertion as first node

In above diagram, the node with data A is inserted as first node of the list and now the

HEAD pointer points to the node A, previously which was pointing to the node B and the

LINK of node A points to the node B.

Add to beginning

 Allocate memory for new node

 Store data

 Change next of new node to point to head

 Change head to point to recently created node

#include<stdio.h>

#include<conio.h>

struct node

{

int data;

struct node *next;

};

struct node *start=NULL;

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

void insert()

{

struct node *new_node;

new_node=(struct node *)malloc(sizeof(struct node *));

printf(" Enter the Data");

scanf("%d",&new_node->data);

new_node->next=NULL;

if(start==NULL)

{

start=new_node;

}

else

{

new_node->next=start;

start=new_node;

}

}

void display()

{

struct node *new_node;

new_node=start;

printf("The Linked List is\n");

while(start!=NULL)

{

printf("%d-->",start->data);

start=start->next;

}

printf("NULL");

}

int main()

{

char ch;

clrscr();

do

{

insert();

printf(" Do u want to insert another element");

ch=getche();

printf("\n");

}

while(ch!='n');

display();

getch();

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

return 0;

}

OUTPUT

Insertion as last node:-

In above diagram, the new node with DATA as D is inserted as last node of the list. The

previous last node LINK field ,which was NULL, now it point to new node.

Add to end

 Allocate memory for new node

 Store data

 Traverse to last node

 Change next of last node to recently created node

Algorithm:-

struct node *newNode;

newNode = (struct node *)malloc(sizeof(struct node));

newNode->data = 4;

newNode->next = NULL;

struct node *temp = head;

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

#include<stdio.h>

#include<conio.h>

struct node

{

int data;

struct node *next;

};

struct node *start=NULL;

int main()

{

char ch;

struct node *new_node,*current;

clrscr();

do

{

new_node=(struct node *)malloc(sizeof(struct node *));

printf("\n Enter the Data");

scanf("%d",&new_node->data);

new_node->next=NULL;

if(start==NULL)

{

start=new_node;

current=new_node;

}

else

{

current->next=new_node;

current=new_node;

}

printf("Do u want to create another node");

ch=getche();

}while(ch!='n');

printf("\nThe Linked List is\n");

while(start!=NULL)

{

printf("%d-->",start->data);

start=start->next;

}

printf("NULL");

while(temp->next != NULL){

temp = temp->next;

}

temp->next = newNode;

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

Algorithm;-

struct node *newNode;

newNode = malloc(sizeof(struct node));

newNode->data = 4;

struct node *temp = head;

for(int i=1; i < position-1; i++) {

temp = temp->next;

}

getch();

return 0;

}

Insertion as the specified position:-

In above diagram, the new node with DATA as X is inserted between the nodes B and C. The

LINK field of B pointing to new node and the link of the new node points to the node C. Let

value of be the DATA of the node after which the node is inserted. Here B is the key node

after which the new node has to the inserted.

Add to middle

 Allocate memory and store data for new node

 Traverse to node just before the required position of new node

 Change next pointers to include new node in between

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

#include<stdio.h>

struct node

{

int data;

struct node *next;

};

struct node *head=NULL;

void insert()

{

struct node *new_node;

int n,i;

new_node=(struct node *)malloc(sizeof(struct node *));

printf("\nEnter the Data");

scanf("%d",&new_node->data);

new_node->next=NULL;

printf("Enter the postion to insert an element");

scanf("%d",&n);

if(n==1)

{

new_node->next=head;

head=new_node;

}

else

{

struct node *temp=head;

for(i=1;i<n-1;i++)

{

temp=temp->next;

}

new_node->next=temp->next;

temp->next=new_node;

}

}

void display()

{

struct node *new_node;

new_node=head;

printf("The Linked List is");

while(new_node!=NULL)

{

newNode->next = temp->next;

temp->next = newNode;

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

printf("%d-->",new_node->data);

new_node=new_node->next;

}

printf("NULL");

}

int main()

{

char ch;

clrscr();

do

{

insert();

display();

printf("Do u want to insert another element");

ch=getche();

printf("\n");

}

while(ch!='n');

getch();

return 0;

}

Deletion:-

Deletion is an operation to delete a node into the list. In a singly linked list, a node can be

deleted at three different locations

 Deletion as first node

 Deletion as last node

 Deletion as the specified position

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

head = head->next;

Deletion as first node:-

In above figure, the first node of the list is deleted and the head nodes LINK field pointing to the

deleted node now points to the next node. The LINK field of tnode to be deleted is set to NULL.

Delete from beginning

 Point head to the second node

Deletion as last node:-

Delete from end

 Traverse to second last element

 Change its next pointer to null

struct node* temp = head;

while(temp->next->next!=NULL){

temp = temp->next;

}

temp->next = NULL;

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

for(int i=2; i< position; i++) {

if(temp->next!=NULL) {

temp = temp->next;

}

}

temp->next = temp->next->next;

Deletion as the specified position:-

Delete from n th position
 Traverse to element before the element to be deleted

 Change next pointers to exclude the node from the chain

#include<stdio.h>

#include<conio.h>

struct node

{

int data;

struct node *next;

};

struct node *head=NULL;

void insert(int x)

{

struct node *new_node;

new_node=(struct node *)malloc(sizeof(struct node *));

new_node->data=x;

new_node->next=head;

head=new_node;

}

void display()

{

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

struct node *new_node;

new_node=head;

printf("The Linked List is");

while(new_node!=NULL)

{

printf("%d-->",new_node->data);

new_node=new_node->next;

}

printf("NULL");

}

void delete(int n)

{

struct node *temp1=head,*temp2;

if(n==1)

{

head=temp1->next;

free(temp1);

}

else

{

int i;

for(i=1;i<=n-2;i++)

{

temp1=temp1->next;

}

temp2=temp1->next;

temp1->next=temp2->next;

free(temp2);

}

}

int main()

{

int n;

insert(17);

insert(12);

insert(23);

insert(15);

display();

printf("\nEnter the position to delete element");

scanf("%d",&n);

delete(n);

display();

getch();

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

return 0;

}

Complete program for linked list operations

Here is the complete program for all the linked list operations we learnt till now. Lots of edge

cases have been left out to make the program short.

We suggest you to just have a look at the program and try to implement it yourself.

Also, notice how we pass address of head as struct node **headRef in the

functions insertAtFront and deleteFromFront. These two functions change the position of

head pointer so we need to pass the address of head pointer and change its value within the

function.

#include<stdio.h>

#include<stdlib.h>

struct node

{

int data;

struct node *next;

};

void display(struct node* head)

{

struct node *temp = head;

printf("\n\nList elements are - \n");

while(temp != NULL)

{

printf("%d --->",temp->data);

temp = temp->next;

}

}

void insertAtMiddle(struct node *head, int position, int value) {

struct node *temp = head;

struct node *newNode;

newNode = malloc(sizeof(struct node));

newNode->data = value;

int i;

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

for(i=2; inext != NULL) {

temp = temp->next;

}

}

newNode->next = temp->next;

temp->next = newNode;

}

void insertAtFront(struct node** headRef, int value) {

struct node* head = *headRef;

struct node *newNode;

newNode = malloc(sizeof(struct node));

newNode->data = value;

newNode->next = head;

head = newNode;

*headRef = head;

}

void insertAtEnd(struct node* head, int value){

struct node *newNode;

newNode = malloc(sizeof(struct node));

newNode->data = value;

newNode->next = NULL;

struct node *temp = head;

while(temp->next != NULL){

temp = temp->next;

}

temp->next = newNode;

}

void deleteFromFront(struct node** headRef){

struct node* head = *headRef;

head = head->next;

*headRef = head;

}

void deleteFromEnd(struct node* head){

struct node* temp = head;

while(temp->next->next!=NULL){

temp = temp->next;

}

temp->next = NULL;

}

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

void deleteFromMiddle(struct node* head, int position){

struct node* temp = head;

int i;

for(i=2; inext != NULL) {

temp = temp->next;

}

}

temp->next = temp->next->next;

}

int main() {

/* Initialize nodes */

struct node *head;

struct node *one = NULL;

struct node *two = NULL;

struct node *three = NULL;

/* Allocate memory */

one = malloc(sizeof(struct node));

two = malloc(sizeof(struct node));

three = malloc(sizeof(struct node));

/* Assign data values */

one->data = 1;

two->data = 2;

three->data = 3;

/* Connect nodes */

one->next = two;

two->next = three;

three->next = NULL;

/* Save address of first node in head */

head = one;

display(head); // 1 --->2 --->3 --->

insertAtFront(&head, 4);

display(head); // 4 --->1 --->2 --->3 --->

deleteFromFront(&head);

display(head); // 1 --->2 --->3 --->

insertAtEnd(head, 5);

display(head); // 1 --->2 --->3 --->5 --->

deleteFromEnd(head);

display(head); // 1 --->2 --->3 --->

int position = 3;

insertAtMiddle(head, position, 10);

display(head); // 1 --->2 --->10 --->3 --->

deleteFromMiddle(head, position);

display(head); // 1 --->2 --->3 --->

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

List elements are -

1 --->2 --->10 --->3 --->

List elements are -

1 --->2 --->3 --->

List elements are -

4 --->1 --->2 --->3 --->

List elements are -

1 --->2 --->3 --->

List elements are -

1 --->2 --->3 --->5 --->

List elements are -

1 --->2 --->3 --->

The output of the above program is

Double Linked List

What is Double Linked List?

In a single linked list, every node has link to its next node in the sequence. So, we can traverse

from one node to other node only in one direction and we can not traverse back. We can solve

this kind of problem by using double linked list. Double linked list can be defined as follows...

In double linked list, every node has link to its previous node and next node. So, we can traverse

forward by using next field and can traverse backward by using previous field. Every node in a

double linked list contains three fields and they are shown in the following figure...

Double linked list is a sequence of elements in which every element has links to its

previous element and next element in the sequence.

}

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

Here, 'link1' field is used to store the address of the previous node in the sequence, 'link2' field

is used to store the address of the next node in the sequence and 'data' field is used to store the

actual value of that node.

Example

Note:

☀ In double linked list, the first node must be always pointed by head.

☀ Always the previous field of the first node must be NULL.

☀ Always the next field of the last node must be NULL.

Operations

In a double linked list, we perform the following operations...

1. Insertion

2. Deletion

3. Display

Insertion

In a double linked list, the insertion operation can be performed in three ways as follows...

1. Inserting At Beginning of the list

2. Inserting At End of the list

3. Inserting At Specific location in the list

Inserting At Beginning of the list

We can use the following steps to insert a new node at beginning of the double linked list...

 Step 1: Create a newNode with given value and newNode → previous as NULL.

 Step 2: Check whether list is Empty (head == NULL)

 Step 3: If it is Empty then, assign NULL to newNode → next and newNode to head.

 Step 4: If it is not Empty then, assign head to newNode → next and newNode to head.

Inserting At End of the list

We can use the following steps to insert a new node at end of the double linked list...

 Step 1: Create a newNode with given value and newNode → next as NULL.

 Step 2: Check whether list is Empty (head == NULL)

 Step 3: If it is Empty, then assign NULL to newNode →

previous and newNode to head.

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

 Step 4: If it is not Empty, then, define a node pointer temp and initialize with head.

 Step 5: Keep moving the temp to its next node until it reaches to the last node in the list

(until temp → next is equal to NULL).

 Step 6: Assign newNode to temp → next and temp to newNode → previous.

Inserting At Specific location in the list (After a Node)

We can use the following steps to insert a new node after a node in the double linked list...

 Step 1: Create a newNode with given value.

 Step 2: Check whether list is Empty (head == NULL)

 Step 3: If it is Empty then, assign NULL to newNode → previous & newNode →

next and newNode to head.

 Step 4: If it is not Empty then, define two node pointers temp1 & temp2 and

initialize temp1 with head.

 Step 5: Keep moving the temp1 to its next node until it reaches to the node after which

we want to insert the newNode (until temp1 → data is equal to location, here location is

the node value after which we want to insert the newNode).

 Step 6: Every time check whether temp1 is reached to the last node. If it is reached to the

last node then display 'Given node is not found in the list!!! Insertion not

possible!!!' and terminate the function. Otherwise move the temp1 to next node.

 Step7: Assign temp1 → next to temp2,

 newNode to temp1 → next, temp1 to newNode → previous, temp2 to newNode →

next and newNode to temp2 → previous.

Deletion

In a double linked list, the deletion operation can be performed in three ways as follows...

1. Deleting from Beginning of the list

2. Deleting from End of the list

3. Deleting a Specific Node

Deleting from Beginning of the list

We can use the following steps to delete a node from beginning of the double linked list...

 Step 1: Check whether list is Empty (head == NULL)

 Step 2: If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

 Step 3: If it is not Empty then, define a Node pointer 'temp' and initialize with head.

 Step 4: Check whether list is having only one node (temp → previous is equal to temp

→ next)

 Step 5: If it is TRUE, then set head to NULL and delete temp (Setting Empty list

conditions)

 Step 6: If it is FALSE, then assign temp → next to head, NULL to head →

previous and delete temp.

Deleting from End of the list

We can use the following steps to delete a node from end of the double linked list...

 Step 1: Check whether list is Empty (head == NULL)

 Step 2: If it is Empty, then display 'List is Empty!!! Deletion is not possible' and

terminate the function.

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

 Step 3: If it is not Empty then, define a Node pointer 'temp' and initialize with head.

 Step 4: Check whether list has only one Node (temp → previous and temp → next both

are NULL)

 Step 5: If it is TRUE, then assign NULL to head and delete temp. And terminate from

the function. (Setting Empty list condition)

 Step 6: If it is FALSE, then keep moving temp until it reaches to the last node in the list.

(until temp → next is equal to NULL)

 Step 7: Assign NULL to temp → previous → next and delete temp.

Deleting a Specific Node from the list

We can use the following steps to delete a specific node from the double linked list...

 Step 1: Check whether list is Empty (head == NULL)

 Step 2: If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

 Step 3: If it is not Empty, then define a Node pointer 'temp' and initialize with head.

 Step 4: Keep moving the temp until it reaches to the exact node to be deleted or to the

last node.

 Step 5: If it is reached to the last node, then display 'Given node not found in the list!

Deletion not possible!!!' and terminate the fuction.

 Step 6: If it is reached to the exact node which we want to delete, then check whether list

is having only one node or not

 Step 7: If list has only one node and that is the node which is to be deleted then

set head to NULL and delete temp (free(temp)).

 Step 8: If list contains multiple nodes, then check whether temp is the first node in the

list (temp == head).

 Step 9: If temp is the first node, then move the head to the next node (head = head →

next), set headof previous to NULL (head → previous = NULL) and delete temp.

 Step 10: If temp is not the first node, then check whether it is the last node in the list

(temp → next == NULL).

 Step 11: If temp is the last node then set temp of previous of next to NULL (temp →

previous → next = NULL) and delete temp (free(temp)).

 Step 12: If temp is not the first node and not the last node, then

set temp of previous of next to tempof next (temp → previous → next = temp →

next), temp of next of previous to temp of previous(temp → next → previous = temp

→ previous) and delete temp (free(temp)).

Displaying a Double Linked List

We can use the following steps to display the elements of a double linked list...

 Step 1: Check whether list is Empty (head == NULL)

 Step 2: If it is Empty, then display 'List is Empty!!!' and terminate the function.

 Step 3: If it is not Empty, then define a Node pointer 'temp' and initialize with head.

 Step 4: Display 'NULL <--- '.

 Step 5: Keep displaying temp → data with an arrow (<===>) until temp reaches to the

last node

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

 Step 6: Finally, display temp → data with arrow pointing to NULL (temp → data --->

NULL).

Complete Program in C Programming Language

#include<stdio.h>

#include<conio.h>

void insertAtBeginning(int);

void insertAtEnd(int);

void insertAtAfter(int,int);

void deleteBeginning();

void deleteEnd();

void deleteSpecific(int);

void display();

struct Node

{

int data;

struct Node *previous, *next;

}*head = NULL;

void main()

{

int choice1, choice2, value, location;

clrscr();

while(1)

{

printf("\n*********** MENU *************\n");

printf("1. Insert\n2. Delete\n3. Display\n4. Exit\nEnter your choice: ");

scanf("%d",&choice1);

switch()

{

case 1: printf("Enter the value to be inserted: ");

scanf("%d",&value);

choice: ");

while(1)

{

printf("\nSelect from the following Inserting options\n");

printf("1. At Beginning\n2. At End\n3. After a Node\n4. Cancel\nEnter your

scanf("%d",&choice2);

switch(choice2)

{

case 1: insertAtBeginning(value);

break;

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

case 2: insertAtEnd(value);

break;

case 3: printf("Enter the location after which you want to insert: ");

scanf("%d",&location);

insertAfter(value,location);

break;

case 4: goto EndSwitch;

default: printf("\nPlease select correct Inserting option!!!\n");

}

}

case 2: while(1)

{

choice: ");

printf("\nSelect from the following Deleting options\n");

printf("1. At Beginning\n2. At End\n3. Specific Node\n4. Cancel\nEnter your

scanf("%d",&choice2);

switch(choice2)

{

case 1: deleteBeginning();

break;

case 2: deleteEnd();

break;

case 3: printf("Enter the Node value to be deleted: ");

scanf("%d",&location);

deleteSpecic(location);

break;

case 4: goto EndSwitch;

default: printf("\nPlease select correct Deleting option!!!\n");

}

}

EndSwitch: break;

case 3: display();

break;

case 4: exit(0);

default: printf("\nPlease select correct option!!!");

}

}

}

void insertAtBeginning(int value)

{

struct Node *newNode;

newNode = (struct Node*)malloc(sizeof(struct Node));

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

newNode -> data = value;

newNode -> previous = NULL;

if(head == NULL)

{

newNode -> next = NULL;

head = newNode;

}

else

{

newNode -> next = head;

head = newNode;

}

printf("\nInsertion success!!!");

}

void insertAtEnd(int value)

{

struct Node *newNode;

newNode = (struct Node*)malloc(sizeof(struct Node));

newNode -> data = value;

newNode -> next = NULL;

if(head == NULL)

{

newNode -> previous = NULL;

head = newNode;

}

else

{

struct Node *temp = head;

while(temp -> next != NULL)

temp = temp -> next;

temp -> next = newNode;

newNode -> previous = temp;

}

printf("\nInsertion success!!!");

}

void insertAfter(int value, int location)

{

struct Node *newNode;

newNode = (struct Node*)malloc(sizeof(struct Node));

newNode -> data = value;

if(head == NULL)

{

newNode -> previous = newNode -> next = NULL;

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

head = newNode;

}

else

{

struct Node *temp1 = head, temp2;

while(temp1 -> data != location)

{

if(temp1 -> next == NULL)

{

printf("Given node is not found in the list!!!");

goto EndFunction;

}

else

{

temp1 = temp1 -> next;

}

}

temp2 = temp1 -> next;

temp1 -> next = newNode;

newNode -> previous = temp1;

newNode -> next = temp2;

temp2 -> previous = newNode;

printf("\nInsertion success!!!");

}

}

void deleteBeginning()

{

if(head == NULL)

printf("List is Empty!!! Deletion not possible!!!");

else

{

struct Node *temp = head;

if(temp -> previous == temp -> next)

{

head = NULL;

free(temp);

}

else{

head = temp -> next;

head -> previous = NULL;

free(temp);

}

printf("\nDeletion success!!!");

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

}

}

void deleteEnd()

{

if(head == NULL)

printf("List is Empty!!! Deletion not possible!!!");

else

{

struct Node *temp = head;

if(temp -> previous == temp -> next)

{

head = NULL;

free(temp);

}

else{

while(temp -> next != NULL)

temp = temp -> next;

temp -> previous -> next = NULL;

free(temp);

}

printf("\nDeletion success!!!");

}

}

void deleteSpecific(int delValue)

{

if(head == NULL)

printf("List is Empty!!! Deletion not possible!!!");

else

{

struct Node *temp = head;

while(temp -> data != delValue)

{

if(temp -> next == NULL)

{

printf("\nGiven node is not found in the list!!!");

goto FuctionEnd;

}

else

{

temp = temp -> next;

}

}

if(temp == head)

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

{

head = NULL;

free(temp);

}

else

{

temp -> previous -> next = temp -> next;

free(temp);

}

printf("\nDeletion success!!!");

}

FuctionEnd:

}

void display()

{

if(head == NULL)

printf("\nList is Empty!!!");

else

{

struct Node *temp = head;

printf("\nList elements are: \n");

printf("NULL <--- ");

while(temp -> next != NULL)

{

printf("%d <===> ",temp -> data);

}

printf("%d ---> NULL", temp -> data);

}

}

Circular Linked List?

In single linked list, every node points to its next node in the sequence and the last node points

NULL. But in circular linked list, every node points to its next node in the sequence but the last

node points to the first node in the list.

Circular linked list is a sequence of elements in which every element has link to its next

element in the sequence and the last element has a link to the first element in the

sequence.

That means circular linked list is similar to the single linked list except that the last node points

to the first node in the list

Example

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

Operations

In a circular linked list, we perform the following operations...

1. Insertion

2. Deletion

3. Display

Before we implement actual operations, first we need to setup empty list. First perform the

following steps before implementing actual operations.

 Step 1: Include all the header files which are used in the program.

 Step 2: Declare all the user defined functions.

 Step 3: Define a Node structure with two members data and next

 Step 4: Define a Node pointer 'head' and set it to NULL.

 Step 4: Implement the main method by displaying operations menu and make suitable

function calls in the main method to perform user selected operation.

Insertion

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

In above figure, the node A is inserted between the head and node B. first the value insert at node

A and make the new node pointer point to the node B. Now assign the head node pointer with the

address of new node i.e head node pointing to the new node.

In a circular linked list, the insertion operation can be performed in three ways. They are as

follows...

1. Inserting At Beginning of the list

2. Inserting At End of the list

3. Inserting At Specific location in the list

Inserting At Beginning of the list

We can use the following steps to insert a new node at beginning of the circular linked list...

 Step 1: Create a newNode with given value.

 Step 2: Check whether list is Empty (head == NULL)

 Step 3: If it is Empty then, set head = newNode and newNode→next = head .

 Step 4: If it is Not Empty then, define a Node pointer 'temp' and initialize with 'head'.

 Step 5: Keep moving the 'temp' to its next node until it reaches to the last node (check

the loop 'While(temp → next == head).

 Step 6:If it is true then set temp=temp->next

 Step 7: Set 'newNode → next =head', 'head = newNode' and 'temp → next = head'.

#include<stdio.h>

#include<conio.h>

struct node

{

int data;

struct node *next;

};

struct node *start=NULL;

void insert()

{

struct node *new_node;

new_node=(struct node *)malloc(sizeof(struct node *));

printf(" Enter the Data");

scanf("%d",&new_node->data);

//new_node->next=NULL;

if(start==NULL)

{

start=new_node;

new_node->next=start;

}

else

{

struct node *temp=start;

while(temp->next!=start)

{

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

temp=temp->next;

}

new_node->next=start;

start=new_node;

temp->next=start;

}

}

void display()

{

struct node *temp=start;

printf("The Linked List is\n");

while(temp->next!=start)

{

printf("%d-->",temp->data);

temp=temp->next;

}

printf("%d-->",temp->data,next-->data);

}

int main()

{

char ch;

clrscr();

do

{

insert();

printf(" Do u want to insert another element");

ch=getche();

printf("\n");

}

while(ch!='n');

display();

getch();

return 0;

}

Output

Inserting At End of the list

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

We can use the following steps to insert a new node at end of the circular linked list...

 Step 1: Create a newNode with given value.

 Step 2: Check whether list is Empty (head == NULL).

 Step 3: If it is Empty then, set head = newNode and newNode → next = head.

 Step 4: If it is Not Empty then, define a node pointer temp and initialize with head.

 Step 5: Keep moving the temp to its next node until it reaches to the last node in the list

(until temp → next == head).

 Step 6: Set temp → next = newNode and newNode → next = head.

Inserting At Specific location in the list (After a Node)

We can use the following steps to insert a new node after a node in the circular linked list...

 Step 1: Create a newNode with given value.

 Step 2: Check whether list is Empty (head == NULL)

 Step 3: If it is Empty then, set head = newNode and newNode → next = head.

 Step 4: If it is Not Empty then, define a node pointer temp and initialize with head.

 Step 5: Keep moving the temp to its next node until it reaches to the node after which we

want to insert the newNode (until temp1 → data is equal to location, here location is the

node value after which we want to insert the newNode).

 Step 6: Every time check whether temp is reached to the last node or not. If it is reached

to last node then display 'Given node is not found in the list!!! Insertion not

possible!!!' and terminate the function. Otherwise move the temp to next node.

 Step 7: If temp is reached to the exact node after which we want to insert the newNode

then check whether it is last node (temp → next == head).

 Step 8: If temp is last node then set temp → next = newNode and newNode →

next = head.

 Step 8: If temp is not last node then set newNode → next = temp → next and temp →

next = newNode.

Deletion

In above figure, node D is deleted from the list. So link of node C is pointing to head, which

shown by dashed line. Finally return unused node(node D) to the memory bank.

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

In a circular linked list, the deletion operation can be performed in three ways those are as

follows...

1. Deleting from Beginning of the list

2. Deleting from End of the list

3. Deleting a Specific Node

Deleting from Beginning of the list

We can use the following steps to delete a node from beginning of the circular linked list...

 Step 1: Check whether list is Empty (head == NULL)

 Step 2: If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

 Step 3: If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize both 'temp1' and 'temp2' with head.

 Step 4: Check whether list is having only one node (temp1 → next == head)

 Step 5: If it is TRUE then set head = NULL and delete temp1 (Setting Empty list

conditions)

 Step 6: If it is FALSE move the temp1 until it reaches to the last node. (until temp1 →

next == head)

 Step 7: Then set head = temp2 → next, temp1 → next = head and delete temp2.

Deleting from End of the list

We can use the following steps to delete a node from end of the circular linked list...

 Step 1: Check whether list is Empty (head == NULL)

 Step 2: If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

 Step 3: If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize 'temp1' with head.

 Step 4: Check whether list has only one Node (temp1 → next == head)

 Step 5: If it is TRUE. Then, set head = NULL and delete temp1. And terminate from

the function. (Setting Empty list condition)

 Step 6: If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next node.

Repeat the same until temp1 reaches to the last node in the list. (until temp1 →

next == head)

 Step 7: Set temp2 → next = head and delete temp1.

Deleting a Specific Node from the list

We can use the following steps to delete a specific node from the circular linked list...

 Step 1: Check whether list is Empty (head == NULL)

 Step 2: If it is Empty then, display 'List is Empty!!! Deletion is not possible' and

terminate the function.

 Step 3: If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and

initialize 'temp1' with head.

 Step 4: Keep moving the temp1 until it reaches to the exact node to be deleted or to the

last node. And every time set 'temp2 = temp1' before moving the 'temp1' to its next

node.

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

 Step 5: If it is reached to the last node then display 'Given node not found in the list!

Deletion not possible!!!'. And terminate the function.

 Step 6: If it is reached to the exact node which we want to delete, then check whether list

is having only one node (temp1 → next == head)

 Step 7: If list has only one node and that is the node to be deleted then

set head = NULL and delete temp1 (free(temp1)).

 Step 8: If list contains multiple nodes then check whether temp1 is the first node in the

list (temp1 == head).

 Step 9: If temp1 is the first node then set temp2 = head and keep moving temp2 to its

next node until temp2 reaches to the last node. Then set head = head → next, temp2 →

next = head and delete temp1.

 Step 10: If temp1 is not first node then check whether it is last node in the list (temp1 →

next == head).

 Step 11: If temp1 is last node then set temp2 → next = head and

delete temp1 (free(temp1)).

 Step 12: If temp1 is not first node and not last node then set temp2 → next = temp1 →

next and delete temp1 (free(temp1)).

Displaying a circular Linked List

We can use the following steps to display the elements of a circular linked list...

 Step 1: Check whether list is Empty (head == NULL)

 Step 2: If it is Empty, then display 'List is Empty!!!' and terminate the function.

 Step 3: If it is Not Empty then, define a Node pointer 'temp' and initialize with head.

 Step 4: while(temp->next!=head)

Keep displaying temp → data with an arrow (--->) until temp reaches to the last node

 Step 5: Finally display temp → data with arrow pointing to head → data.

Complete Program in C Programming Language

#include<stdio.h>

#include<conio.h>

void insertAtBeginning(int);

void insertAtEnd(int);

void insertAtAfter(int,int);

void deleteBeginning();

void deleteEnd();

void deleteSpecific(int);

void display();

struct Node

{

int data;

struct Node *next;

}*head = NULL;

void main()

{

int choice1, choice2, value, location;

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

clrscr();

while(1)

{

printf("\n*********** MENU *************\n");

printf("1. Insert\n2. Delete\n3. Display\n4. Exit\nEnter your choice: ");

scanf("%d",&choice1);

switch(choice1)

{

case 1: printf("Enter the value to be inserted: ");

scanf("%d",&value);

while(1)

{

your choice: ");

printf("\nSelect from the following Inserting options\n");

printf("1. At Beginning\n2. At End\n3. After a Node\n4. Cancel\nEnter

scanf("%d",&choice2);

switch(choice2)

{

case 1: insertAtBeginning(value);

break;

case 2: insertAtEnd(value);

break;

case 3: printf("Enter the location after which you want to insert: ");

scanf("%d",&location);

insertAtAfter(value,location);

break;

case 4: goto EndSwitch;

default: printf("\nPlease select correct Inserting option!!!\n");

}

}

case 2: while(1)

{

your choice: ");

printf("\nSelect from the following Deleting options\n");

printf("1. At Beginning\n2. At End\n3. Specific Node\n4. Cancel\nEnter

scanf("%d",&choice2);

switch(choice2)

{

case 1: deleteBeginning();

break;

case 2: deleteEnd();

break;

case 3: printf("Enter the Node value to be deleted: ");

NARAYANA ENGINEERING COLLEGE::GUDUR Prepared By Mr.S.Sivaiah

scanf("%d",&location);

deleteSpecific(location);

break;

case 4: goto EndSwitch;

default: printf("\nPlease select correct Deleting option!!!\n");

}

}

EndSwitch: break;

case 3: display();

break;

case 4: exit(0);

default: printf("\nPlease select correct option!!!");

}

}

}

void insertAtBeginning(int value)

{

struct Node *newNode;

newNode = (struct Node*)malloc(sizeof(struct Node));

newNode -> data = value;

if(head == NULL)

{

head = newNode;

newNode -> next = head;

}

else

{

struct Node *temp = head;

while(temp -> next != head)

temp = temp -> next;

newNode -> next = head;

head = newNode;

temp -> next = head;

}

printf("\nInsertion success!!!");

}

void insertAtEnd(int value)

{

struct Node *newNode;

newNode = (struct Node*)malloc(sizeof(struct Node));

newNode -> data = value;

if(head == NULL)

}

47

{

head = newNode;

newNode -> next = head;

}

else

{

struct Node *temp = head;

while(temp -> next != head)

temp = temp -> next;

temp -> next = newNode;

newNode -> next = head;

}

printf("\nInsertion success!!!");

}

void insertAtAfter(int value, int location)

{

struct Node *newNode;

newNode = (struct Node*)malloc(sizeof(struct Node));

newNode -> data = value;

if(head == NULL)

{

head = newNode;

newNode -> next = head;

}

else

{

struct Node *temp = head;

while(temp -> data != location)

{

if(temp -> next == head)

{

printf("Given node is not found in the list!!!");

goto EndFunction;

}

else

{

temp = temp -> next;

}

}

newNode -> next = temp -> next;

temp -> next = newNode;

printf("\nInsertion success!!!");

}

48

EndFunction:

}

void deleteBeginning()

{

if(head == NULL)

printf("List is Empty!!! Deletion not possible!!!");

else

{

struct Node *temp = head;

if(temp -> next == head)

{

head = NULL;

free(temp);

}

else{

head = head -> next;

free(temp);

}

printf("\nDeletion success!!!");

}

}

void deleteEnd()

{

if(head == NULL)

printf("List is Empty!!! Deletion not possible!!!");

else

{

struct Node *temp1 = head, *temp2;

if(temp1 -> next == head)

{

head = NULL;

free(temp1);

}

else{

while(temp1 -> next != head){

temp2 = temp1;

temp1 = temp1 -> next;

}

temp2 -> next = head;

free(temp1);

}

printf("\nDeletion success!!!");

NARAYANA ENGINEERING COLLEGE | GUDUR Page 49

}

void deleteSpecific(int delValue)

{

if(head == NULL)

printf("List is Empty!!! Deletion not possible!!!");

else

{

struct Node *temp1 = head, *temp2;

while(temp1 -> data != delValue)

{

if(temp1 -> next == head)

{

printf("\nGiven node is not found in the list!!!");

goto FuctionEnd;

}

else

{

temp2 = temp1;

temp1 = temp1 -> next;

}

}

if(temp1 -> next == head){

head = NULL;

free(temp1);

}

else{

if(temp1 == head)

{

temp2 = head;

while(temp2 -> next != head)

temp2 = temp2 -> next;

head = head -> next;

temp2 -> next = head;

free(temp1);

}

else

{

if(temp1 -> next == head)

{

temp2 -> next = head;

}

else

{

NARAYANA ENGINEERING COLLEGE | GUDUR Page 50

temp2 -> next = temp1 -> next;

}

free(temp1);

}

}

printf("\nDeletion success!!!");

}

FuctionEnd:

}

void display()

{

if(head == NULL)

printf("\nList is Empty!!!");

else

{

struct Node *temp = head;

printf("\nList elements are: \n");

while(temp -> next != head)

{

printf("%d ---> ",temp -> data);

temp=temp->next;

}

printf("%d ---> %d", temp -> data, head -> data);

}

}

Applications of linked list

1. Implementation of stacks and queues
2. Implementation of graphs : Adjacency list representation of graphs is most popular which

is uses linked list to store adjacent vertices.

3. Dynamic memory allocation : We use linked list of free blocks.

4. Maintaining directory of names

5. Performing arithmetic operations on long integers

6. Manipulation of polynomials by storing constants in the node of linked list

7. representing sparse matrices

NARAYANA ENGINEERING COLLEGE | GUDUR Page 51

UNIT-2

What is a Stack?

Stack is a linear data structure in which the insertion and deletion operations are performed at

only one end. In a stack, adding and removing of elements are performed at single position

which is known as "top". That means, new element is added at top of the stack and an element is

removed from the top of the stack. In stack, the insertion and deletion operations are performed

based on LIFO (Last In First Out) principle.

Def:- "A Collection of similar data items in which both insertion and deletion operations

are performed based on LIFO principle".

The following are the operations of stack

1.Push

2. Pop

3.Display

4.Isempty

5.Isfull

6.Peek

1.Push:-

In a stack, the insertion operation is performed using a function called "push".

2.Pop:-

In a stack, the deletion operation is performed using a function called "pop".
In the figure, PUSH and POP operations are performed at top position in the stack. That means,

both the insertion and deletion operations are performed at one end (i.e., at Top)

3. Display:-

By using display operation, to display the elements of stack

4. Isempty:-

It is used to check the stack is empty or not. If it is empty it display the stack is under flow i.e

deletion is not possible

5. Isfull:-

It is used to check the stack is full or not. If stack is full, it display overflow. i.e insertion is not

possible

NARAYANA ENGINEERING COLLEGE | GUDUR Page 52

6. Peek:-

It is used to get the value of the top element without removing it.

Example

If we want to create a stack by inserting 10,45,12,16,35 and 50. Then 10 becomes the bottom

most element and 50 is the top most element. Top is at 50 as shown in the image below...

Stack data structure can be implement in two ways. They are as follows...

1. Using Array

2. Using Linked List

When stack is implemented using array, that stack can organize only limited number of elements.

When stack is implemented using linked list, that stack can organize unlimited number of

elements.

Stack Using Array:-

A stack data structure can be implemented using one dimensional array. But stack implemented

using array, can store only fixed number of data values. This implementation is very simple, just

define a one dimensional array of specific size and insert or delete the values into that array by

using LIFO principle with the help of a variable 'top'. Initially top is set to -1. Whenever we

want to insert a value into the stack, increment the top value by one and then insert. Whenever

we want to delete a value from the stack, then delete the top value and decrement the top value

by one.

Stack Operations using Array

A stack can be implemented using array as follows...

Before implementing actual operations, first follow the below steps to create an empty stack.

 Step 1: Include all the header files which are used in the program and define a

constant 'SIZE' with specific value.

 Step 2: Declare all the functions used in stack implementation.

 Step 3: Create a one dimensional array with fixed size (int stack[SIZE])

 Step 4: Define a integer variable 'top' and initialize with '-1'. (int top = -1)

 Step 5: In main method display menu with list of operations and make suitable function

calls to perform operation selected by the user on the stack.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 53

push(value) - Inserting value into the stack:-

In a stack, push() is a function used to insert an element into the stack. In a stack, the new

element is always inserted at top position. Push function takes one integer value as parameter

and inserts that value into the stack. We can use the following steps to push an element on to the

stack...

 Step 1: Check whether stack is FULL. (top == SIZE-1)

 Step 2: If it is FULL, then display "Stack is FULL!!! Insertion is not possible!!!" and

terminate the function.

 Step 3: If it is NOT FULL, then increment top value by one (top++) and set stack[top]

to value (stack[top] = value).

pop() - Delete a value from the Stack:-

In a stack, pop() is a function used to delete an element from the stack. In a stack, the element is

always deleted from top position. Pop function does not take any value as parameter. We can use

the following steps to pop an element from the stack...

 Step 1: Check whether stack is EMPTY. (top == -1)

 Step 2: If it is EMPTY, then display "Stack is EMPTY!!! Deletion is not

possible!!!" and terminate the function.

 Step 3: If it is NOT EMPTY, then delete stack[top] and decrement top value by one

(top--).

display() - Displays the elements of a Stack:-

We can use the following steps to display the elements of a stack...

 Step 1: Check whether stack is EMPTY. (top == -1)

 Step 2: If it is EMPTY, then display "Stack is EMPTY!!!" and terminate the function.

 Step 3: If it is NOT EMPTY, then define a variable 'i' and initialize with top.

Display stack[i] value and decrement i value by one (i--).

 Step 4: Repeat above step until i value becomes '0'.

#include<stdio.h>

#include<conio.h>

#define SIZE 10

void push(int);

void pop();

void display();

int stack[SIZE], top = -1;

void main()

{
int value, choice;

clrscr();

while(1){

printf("\n\n***** MENU *****\n");

printf("1. Push\n2. Pop\n3. Display\n4. Exit");

NARAYANA ENGINEERING COLLEGE | GUDUR Page 54

printf("\nEnter your choice: ");

scanf("%d",&choice);

switch(choice){

case 1: printf("Enter the value to be insert: ");

scanf("%d",&value);

push(value);

break;

case 2: pop();
break;

case 3: display();

break;

case 4: exit(0);

default: printf("\nWrong selection!!! Try again!!!");

}

}

}

void push(int value){
if(top == SIZE-1)

printf("\nStack is Full!!! Insertion is not possible!!!");
else{

top++;
stack[top] = value;

printf("\nInsertion success!!!");

}
}

void pop(){

if(top == -1)

printf("\nStack is Empty!!! Deletion is not possible!!!");

else{

printf("\nDeleted : %d", stack[top]);

top--;
}

}

void display(){

if(top == -1)

printf("\nStack is Empty!!!");

else{

int i;
printf("\nStack elements are:\n");
for(i=top; i>=0; i--)

printf("%d\n",stack[i]);

}
}

OUTPUT:

NARAYANA ENGINEERING COLLEGE | GUDUR Page 55

Stack using Linked List

The major problem with the stack implemented using array is, it works only for fixed number of

data values. That means the amount of data must be specified at the beginning of the

implementation itself. Stack implemented using array is not suitable, when we don't know the

size of data which we are going to use. A stack data structure can be implemented by using

linked list data structure. The stack implemented using linked list can work for unlimited number

of values. That means, stack implemented using linked list works for variable size of data. So,

there is no need to fix the size at the beginning of the implementation. The Stack implemented

using linked list can organize as many data values as we want.

In linked list implementation of a stack, every new element is inserted as 'top' element. That

means every newly inserted element is pointed by 'top'. Whenever we want to remove an

element from the stack, simply remove the node which is pointed by 'top' by moving 'top' to its

next node in the list. The next field of the first element must be always NULL.

Example

In above example, the last inserted node is 99 and the first inserted node is 25. The order of

elements inserted is 25, 32,50 and 99.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 56

Operations

To implement stack using linked list, we need to set the following things before implementing
actual operations.

 Step 1: Include all the header files which are used in the program. And declare all

the user defined functions.

 Step 2: Define a 'Node' structure with two members data and next.

 Step 3: Define a Node pointer 'top' and set it to NULL.

 Step 4: Implement the main method by displaying Menu with list of operations and

make suitable function calls in the main method.

push(value) - Inserting an element into the Stack
We can use the following steps to insert a new node into the stack...

 Step 1: Create a newNode with given value.

 Step 2: Check whether stack is Empty (top == NULL)

 Step 3: If it is Empty, then set newNode → next = NULL.

 Step 4: If it is Not Empty, then set newNode → next = top.

 Step 5: Finally, set top = newNode.

pop() - Deleting an Element from a Stack

We can use the following steps to delete a node from the stack...

 Step 1: Check whether stack is Empty (top == NULL).

 Step 2: If it is Empty, then display "Stack is Empty!!! Deletion is not possible!!!" and

terminate the function

 Step 3: If it is Not Empty, then define a Node pointer 'temp' and set it to 'top'.

 Step 4: Then set 'top = top → next'.

 Step 7: Finally, delete 'temp' (free(temp)).

display() - Displaying stack of elements

We can use the following steps to display the elements (nodes) of a stack...

 Step 1: Check whether stack is Empty (top == NULL).

 Step 2: If it is Empty, then display 'Stack is Empty!!!' and terminate the function.

 Step 3: If it is Not Empty, then define a Node pointer 'temp' and initialize with top.

 Step 4: Display 'temp → data --->' and move it to the next node. Repeat the same

until temp reaches to the first node in the stack (temp → next != NULL).

 Step 4: Finally! Display 'temp → data ---> NULL'.

#include<stdio.h>

#include<conio.h>

struct Node

NARAYANA ENGINEERING COLLEGE | GUDUR Page 57

{

int data;

struct Node *next;

}*top = NULL;

void push(int);

void pop();

void display();

void main()

{

int choice, value;
clrscr();

printf("\n:: Stack using Linked List ::\n");
while(1){

printf("\n****** MENU ******\n");

printf("1. Push\n2. Pop\n3. Display\n4. Exit\n");

printf("Enter your choice: ");

scanf("%d",&choice);

switch(choice){
case 1: printf("Enter the value to be insert: ");

scanf("%d", &value);

push(value);

break;

case 2: pop(); break;

case 3: display(); break;

case 4: exit(0);

default: printf("\nWrong selection!!! Please try again!!!\n");
}

}

}

void push(int value)

{

struct Node *newNode;

newNode = (struct Node*)malloc(sizeof(struct Node));

newNode->data = value;

if(top == NULL)
newNode->next = NULL;

else

newNode->next = top;
top = newNode;

printf("\nInsertion is Success!!!\n");

}

void pop()

{

if(top == NULL)

printf("\nStack is Empty!!!\n");

else{

struct Node *temp = top;

printf("\nDeleted element: %d", temp->data);

NARAYANA ENGINEERING COLLEGE | GUDUR Page 58

top = temp->next;

free(temp);

}

}

void display()

{

if(top == NULL)

printf("\nStack is Empty!!!\n");
else{

struct Node *temp = top;
while(temp->next != NULL){

printf("%d--->",temp->data);

temp = temp -> next;

}

printf("%d--->NULL",temp->data);

}

}

Out Put:

Stack Expression

In any programming language, if we want to perform any calculation or to frame a condition etc.,

we use a set of symbols to perform the task. These set of symbols makes an expression.

An expression can be defined as follows...

In above definition, operator is a symbol which performs a particular task like arithmetic
operation or logical operation or conditional operation etc.,

Operands are the values on which the operators can perform the task. Here operand can be a

direct value or variable or address of memory location.

Expression Types

Based on the operator position, expressions are divided into THREE types. They are as follows...

1. Infix Expression

An expression is a collection of operators and operands that represents a specific value.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 59

Operand1 Operator Operand2

2. Postfix Expression

3. Prefix Expression

Infix Expression

In infix expression, operator is used in between operands.

The general structure of an Infix expression is as follows...

Example

Postfix Expression

In postfix expression, operator is used after operands. We can say that "Operator follows the

Operands".

The general structure of Postfix expression is as follows...

Example

Prefix Expression

In prefix expression, operator is used before operands. We can say that "Operands follows the

Operator".

The general structure of Prefix expression is as follows...

Example

Any expression can be represented using the above three different types of expressions. And we

can convert an expression from one form to another form like Infix to Postfix, Infix to

Prefix, Prefix to Postfix and vice versa.

Expression Conversion

Any expression can be represented using three types of expressions (Infix, Postfix and Prefix).

We can also convert one type of expression to another type of expression like Infix to Postfix,

Infix to Prefix, Postfix to Prefix and vice versa.

Operator Operand1 Operand2

Operand1 Operand2 Operator

NARAYANA ENGINEERING COLLEGE | GUDUR Page 60

To convert any Infix expression into Postfix or Prefix expression we can use the following
procedure...

1. Find all the operators in the given Infix Expression.

2. Find the order of operators evaluated according to their Operator precedence.

3. Convert each operator into required type of expression (Postfix or Prefix) in the same

order.

Example

Consider the following Infix Expression to be converted into Postfix Expression...

D = A + B * C

 Step 1: The Operators in the given Infix Expression : = , + , *

 Step 2: The Order of Operators according to their preference : * , + , =

 Step 3: Now, convert the first operator * ------ D = A + B C *

 Step 4: Convert the next operator + ------ D = A BC* +

 Step 5: Convert the next operator = ------ D ABC*+ =

Finally, given Infix Expression is converted into Postfix Expression as follows...

D A B C * + =

Infix to Postfix Conversion using Stack Data Structure

To convert Infix Expression into Postfix Expression using a stack data structure, We can use the
following steps...

1. Read all the symbols one by one from left to right in the given Infix Expression.

2. If the reading symbol is operand, then directly print it to the result (Output).

3. If the reading symbol is left parenthesis '(', then Push it on to the Stack.

4. If the reading symbol is right parenthesis ')', then Pop all the contents of stack until

respective left parenthesis is poped and print each poped symbol to the result.

5. If the reading symbol is operator (+ , - , * , / etc.,), then Push it on to the Stack. However,

first pop the operators which are already on the stack that have higher or equal

precedence than current operator and print them to the result.

Example

Consider the following Infix Expression...

(A + B) * (C - D)

The given infix expression can be converted into postfix expression using Stack data Structure as

follows...

NARAYANA ENGINEERING COLLEGE | GUDUR Page 61

h

The final Postfix Expression is as follows...A B + C D - *

Examples

1)a+(b*c)/d abc*d/+ 2346

NARAYANA ENGINEERING COLLEGE | GUDUR Page 62

2)(a+b)^c-(d*e)/f ab+c^de*f/-

3)(a+b)/(c+d)-(d*e) ab+cd+/de*-

Postfix Expression Evaluation

A postfix expression is a collection of operators and operands in which the operator is placed

after the operands. That means, in a postfix expression the operator follows the operands.

ePostfix Expression has following general structure...

Operand1 Operand2 Operator

Example

Postfix Expression Evaluation using Stack Data Structure

A postfix expression can be evaluated using the Stack data structure. To evaluate a postfix

expression using Stack data structure we can use the following steps...

1. Read all the symbols one by one from left to right in the given Postfix Expression

2. If the reading symbol is operand, then push it on to the Stack.

3. If the reading symbol is operator (+ , - , * , / etc.,), then perform TWO pop operations and

store the two popped oparands in two different variables (operand1 and operand2). Then

perform reading symbol operation using operand1 and operand2 and push result back on

to the Stack.

4. Finally! perform a pop operation and display the popped value as final result.

Example

Consider the following Expression...

NARAYANA ENGINEERING COLLEGE | GUDUR Page 63

Applications of Stack

Expression Evaluation

Stack is used to evaluate prefix, postfix and infix expressions.
Expression Conversion

An expression can be represented in prefix, postfix or infix notation. Stack can be used to

convert one form of expression to another.

Syntax Parsing

NARAYANA ENGINEERING COLLEGE | GUDUR Page 64

Many compilers use a stack for parsing the syntax of expressions, program blocks etc. before

translating into low level code.

Backtracking

Suppose we are finding a path for solving maze problem. We choose a path and after following it

we realize that it is wrong. Now we need to go back to the beginning of the path to start with new

path. This can be done with the help of stack.

Parenthesis Checking

Stack is used to check the proper opening and closing of parenthesis.

String Reversal

Stack is used to reverse a string. We push the characters of string one by one into stack and then

pop character from stack.

Function Call

Stack is used to keep information about the active functions or subroutines.

Queue

What is a Queue?

Queue is a linear data structure in which the insertion and deletion operations are performed at

two different ends. In a queue data structure, adding and removing of elements are performed at

two different positions. The insertion is performed at one end and deletion is performed at other

end. In a queue data structure, the insertion operation is performed at a position which is known

as 'rear' and the deletion operation is performed at a position which is known as 'front'. In queue

data structure, the insertion and deletion operations are performed based on FIFO (First In First

Out) principle.

In a queue data structure, the insertion operation is performed using a function called

"enQueue()" and deletion operation is performed using a function called "deQueue()".

Queue data structure can be defined as follows...

A queue can also be defined as

Example

Queue after inserting 25, 30, 51, 60 and 85.

"Queue data structure is a collection of similar data items in which insertion and deletion

operations are performed based on FIFO principle".

Queue data structure is a linear data structure in which the operations are performed

based on FIFO principle.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 65

Operations on a Queue

The following operations are performed on a queue data structure...

1. enQueue(value) - To insert an element into the queue

2. deQueue() - To delete an element from the queue

3. display() - (To display the elements of the queue)

Queue data structure can be implemented in two ways. They are as follows...

1. Using Array

2. Using Linked List

When a queue is implemented using array, that queue can organize only limited number of

elements. When a queue is implemented using linked list, that queue can organize unlimited

number of elements.

Queue Using Array

A queue data structure can be implemented using one dimensional array. But, queue

implemented using array can store only fixed number of data values. The implementation of

queue data structure using array is very simple, just define a one dimensional array of specific

size and insert or delete the values into that array by using FIFO (First In First Out)

principle with the help of variables 'front' and 'rear'. Initially both 'front' and 'rear' are set to

-1. Whenever, we want to insert a new value into the queue, increment 'rear' value by one and

then insert at that position. Whenever we want to delete a value from the queue, then increment

'front' value by one and then display the value at 'front' position as deleted element.

Queue Operations using Array

Queue data structure using array can be implemented as follows...

Before we implement actual operations, first follow the below steps to create an empty queue.

 Step 1: Include all the header files which are used in the program and define a

constant 'SIZE' with specific value.

 Step 2: Declare all the user defined functions which are used in queue implementation.

 Step 3: Create a one dimensional array with above defined SIZE (int queue[SIZE])

 Step 4: Define two integer variables 'front' and 'rear' and initialize both with '-1'. (int

front = -1, rear = -1)

 Step 5: Then implement main method by displaying menu of operations list and make

suitable function calls to perform operation selected by the user on queue.

enQueue(value) - Inserting value into the queue

In a queue data structure, enQueue() is a function used to insert a new element into the queue. In

a queue, the new element is always inserted at rear position. The enQueue() function takes one

integer value as parameter and inserts that value into the queue. We can use the following steps

to insert an element into the queue...

 Step 1: Check whether queue is FULL. (rear == SIZE-1)

NARAYANA ENGINEERING COLLEGE | GUDUR Page 66

 Step 2: If it is FULL, then display "Queue is FULL!!! Insertion is not possible!!!" and

terminate the function.

 Step 3: If it is NOT FULL, then increment rear value by one (rear++) and

set queue[rear] = value.

deQueue() - Deleting a value from the Queue

In a queue data structure, deQueue() is a function used to delete an element from the queue. In a

queue, the element is always deleted from front position. The deQueue() function does not take

any value as parameter. We can use the following steps to delete an element from the queue...

 Step 1: Check whether queue is EMPTY. (front == rear)

 Step 2: If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not

possible!!!" and terminate the function.

 Step 3: If it is NOT EMPTY, then increment the front value by one (front ++).

Then display queue[front] as deleted element.

display() - Displays the elements of a Queue

We can use the following steps to display the elements of a queue...

 Step 1: Check whether queue is EMPTY. (front == rear)

 Step 2: If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the function.

 Step 3: If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front+1'.

 Step 3: Display 'queue[i]' value and increment 'i' value by one (i++). Repeat the same

until 'i' value is equal to rear (i <= rear)

#include<stdio.h>

#include<conio.h>

#define SIZE 10

void enQueue(int);

void deQueue();

void display();

int queue[SIZE], front = -1, rear = -1;

void main()

{

int value, choice;
clrscr();

while(1){

printf("\n\n***** MENU *****\n");

printf("1. Insertion\n2. Deletion\n3. Display\n4. Exit");

printf("\nEnter your choice: ");

scanf("%d",&choice);
switch(choice){

case 1: printf("Enter the value to be insert: ");

scanf("%d",&value);

enQueue(value);

break;

case 2: deQueue();

break;

case 3: display();

NARAYANA ENGINEERING COLLEGE | GUDUR Page 67

break;

case 4: exit(0);

default: printf("\nWrong selection!!! Try again!!!");

}

}

}

void enQueue(int value){

if(rear == SIZE-1)

printf("\nQueue is Full!!! Insertion is not possible!!!");

else{

if(front == -1)
front = 0;

rear++;

queue[rear] = value;

printf("\nInsertion success!!!");

}

}

void deQueue(){

if(front == rear)

printf("\nQueue is Empty!!! Deletion is not possible!!!");

else{

printf("\nDeleted : %d", queue[front]);
front++;

if(front == rear)

front = rear = -1;

}

}

void display(){
if(rear == -1)

printf("\nQueue is Empty!!!");
else{

int i;

printf("\nQueue elements are:\n");

for(i=front; i<=rear; i++)

printf("%d\t",queue[i]);

}

}

Queue using Linked List

The major problem with the queue implemented using array is, It will work for only fixed

number of data. That means, the amount of data must be specified in the beginning itself. Queue

using array is not suitable when we don't know the size of data which we are going to use. A

queue data structure can be implemented using linked list data structure. The queue which is

implemented using linked list can work for unlimited number of values. That means, queue using

linked list can work for variable size of data (No need to fix the size at beginning of the

implementation). The Queue implemented using linked list can organize as many data values as

we want.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 68

In linked list implementation of a queue, the last inserted node is always pointed by 'rear' and

the first node is always pointed by 'front'.

Example

In above example, the last inserted node is 50 and it is pointed by 'rear' and the first inserted

node is 10 and it is pointed by 'front'. The order of elements inserted is 10, 15, 22 and 50.

Operations

To implement queue using linked list, we need to set the following things before implementing

actual operations.

 Step 1: Include all the header files which are used in the program. And declare all

the user defined functions.

 Step 2: Define a 'Node' structure with two members data and next.

 Step 3: Define two Node pointers 'front' and 'rear' and set both to NULL.

 Step 4: Implement the main method by displaying Menu of list of operations and make

suitable function calls in the main method to perform user selected operation.

enQueue(value) - Inserting an element into the Queue
We can use the following steps to insert a new node into the queue...

 Step 1: Create a newNode with given value and set 'newNode → next' to NULL.

 Step 2: Check whether queue is Empty (rear == NULL)

 Step 3: If it is Empty then, set front = newNode and rear = newNode.

 Step 4: If it is Not Empty then, set rear → next = newNode and rear = newNode.

deQueue() - Deleting an Element from Queue

We can use the following steps to delete a node from the queue...

 Step 1: Check whether queue is Empty (front == NULL).

 Step 2: If it is Empty, then display "Queue is Empty!!! Deletion is not possible!!!" and

terminate from the function

 Step 3: If it is Not Empty then, define a Node pointer 'temp' and set it to 'front'.

 Step 4: Then set 'front = front → next' and delete 'temp' (free(temp)).

display() - Displaying the elements of Queue

We can use the following steps to display the elements (nodes) of a queue...

 Step 1: Check whether queue is Empty (front == NULL).

 Step 2: If it is Empty then, display 'Queue is Empty!!!' and terminate the function.

 Step 3: If it is Not Empty then, define a Node pointer 'temp' and initialize with front.

 Step 4: Display 'temp → data --->' and move it to the next node. Repeat the same until

'temp' reaches to 'rear' (temp → next != NULL).

 Step 4: Finally! Display 'temp → data ---> NULL'.

#include<stdio.h>

#include<conio.h>

NARAYANA ENGINEERING COLLEGE | GUDUR Page 69

struct Node

{

int data;

struct Node *next;

}*front = NULL,*rear = NULL;

void insert(int);

void delete();

void display();

void main()

{

int choice, value;

clrscr();

printf("\n:: Queue Implementation using Linked List ::\n");

while(1){

printf("\n****** MENU ******\n");
printf("1. Insert\n2. Delete\n3. Display\n4. Exit\n");
printf("Enter your choice: ");

scanf("%d",&choice);
switch(choice){

case 1: printf("Enter the value to be insert: ");
scanf("%d", &value);

insert(value);

break;

case 2: delete(); break;

case 3: display(); break;

case 4: exit(0);

default: printf("\nWrong selection!!! Please try again!!!\n");

}

}

}

void insert(int value)
{

struct Node *newNode;
newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = value;

newNode -> next = NULL;
if(front == NULL)

front = rear = newNode;
else{

rear -> next = newNode;
rear = newNode;

}

printf("\nInsertion is Success!!!\n");

}

void delete()
{

if(front == NULL)

printf("\nQueue is Empty!!!\n");

NARAYANA ENGINEERING COLLEGE | GUDUR Page 70

else{

struct Node *temp = front;

front = front -> next;

printf("\nDeleted element: %d\n", temp->data);
free(temp);

}

}

void display()

{

if(front == NULL)
printf("\nQueue is Empty!!!\n");

else{

struct Node *temp = front;

while(temp->next != NULL){

printf("%d--->",temp->data);

temp = temp -> next;

}

printf("%d--->NULL\n",temp->data);

}

}

Circular Queue

In a normal Queue Data Structure, we can insert elements until queue becomes full. But once if

queue becomes full, we can not insert the next element until all the elements are deleted from the

queue. For example consider the queue below...

After inserting all the elements into the queue.

Now consider the following situation after deleting three elements from the queue...

This situation also says that Queue is Full and we can not insert the new element because, 'rear'

is still at last position. In above situation, even though we have empty positions in the queue we

can not make use of them to insert new element. This is the major problem in normal queue data

structure. To overcome this problem we use circular queue data structure.

What is Circular Queue?

NARAYANA ENGINEERING COLLEGE | GUDUR Page 71

A Circular Queue can be defined as follows...

Graphical representation of a circular queue is as follows...

Implementation of Circular Queue

To implement a circular queue data structure using array, we first perform the following steps

before we implement actual operations.

 Step 1: Include all the header files which are used in the program and define a

constant 'SIZE' with specific value.

 Step 2: Declare all user defined functions used in circular queue implementation.

 Step 3: Create a one dimensional array with above defined SIZE (int cQueue[SIZE])

 Step 4: Define two integer variables 'front' and 'rear' and initialize both with '-1'. (int

front = -1, rear = -1)

 Step 5: Implement main method by displaying menu of operations list and make suitable

function calls to perform operation selected by the user on circular queue.

enQueue(value) - Inserting value into the Circular Queue
In a circular queue, enQueue() is a function which is used to insert an element into the circular

queue. In a circular queue, the new element is always inserted at rearposition. The enQueue()

function takes one integer value as parameter and inserts that value into the circular queue. We

can use the following steps to insert an element into the circular queue...

 Step 1: Check whether queue is FULL. ((rear == SIZE-1 && front == 0) || (front ==

rear+1))

 Step 2: If it is FULL, then display "Queue is FULL!!! Insertion is not possible!!!" and

terminate the function.

 Step 3: If it is NOT FULL, then check rear == SIZE - 1 && front != 0 if it is TRUE,

then set rear = -1.

 Step 4: Increment rear value by one (rear++), set queue[rear] = value and check 'front

== -1' if it is TRUE, then set front = 0.

deQueue() - Deleting a value from the Circular Queue

In a circular queue, deQueue() is a function used to delete an element from the circular queue. In

a circular queue, the element is always deleted from front position. The deQueue() function

doesn't take any value as parameter. We can use the following steps to delete an element from

the circular queue...

Circular Queue is a linear data structure in which the operations are performed based on

FIFO (First In First Out) principle and the last position is connected back to the first

position to make a circle.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 72

 Step 1: Check whether queue is EMPTY. (front == -1 && rear == -1)

 Step 2: If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not

possible!!!" and terminate the function.

 Step 3: If it is NOT EMPTY, then display queue[front] as deleted element and

increment the front value by one (front ++). Then check whether front == SIZE, if it

is TRUE, then set front = 0. Then check whether both front - 1 and rear are equal

(front -1 == rear), if it TRUE, then set both front and rear to '-1' (front = rear = -1).

display() - Displays the elements of a Circular Queue
We can use the following steps to display the elements of a circular queue...

 Step 1: Check whether queue is EMPTY. (front == -1)

 Step 2: If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the function.

 Step 3: If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front'.

 Step 4: Check whether 'front <= rear', if it is TRUE, then display 'queue[i]' value and

increment 'i' value by one (i++). Repeat the same until 'i <= rear' becomes FALSE.

 Step 5: If 'front <= rear' is FALSE, then display 'queue[i]' value and increment 'i' value

by one (i++). Repeat the same until'i <= SIZE - 1' becomes FALSE.

 Step 6: Set i to 0.

 Step 7: Again display 'cQueue[i]' value and increment i value by one (i++). Repeat the

same until 'i <= rear' becomes FALSE.

#include<stdio.h>
#include<conio.h>

#define SIZE 5

void enQueue(int);

void deQueue();

void display();

int cQueue[SIZE], front = -1, rear = -1;

void main()

{
int choice, value;

clrscr();

while(1){

printf("\n****** MENU ******\n");

printf("1. Insert\n2. Delete\n3. Display\n4. Exit\n");

printf("Enter your choice: ");

scanf("%d",&choice);

switch(choice){

case 1: printf("\nEnter the value to be insert: ");
scanf("%d",&value);

enQueue(value);

break;

case 2: deQueue();

break;

case 3: display();

break;

case 4: exit(0);

default: printf("\nPlease select the correct choice!!!\n");

NARAYANA ENGINEERING COLLEGE | GUDUR Page 73

}

}

}

void enQueue(int value)

{

if((front == 0 && rear == SIZE - 1) || (front == rear+1))
printf("\nCircular Queue is Full! Insertion not possible!!!\n");

else{

if(rear == SIZE-1 && front != 0)

rear = -1;

cQueue[++rear] = value;

printf("\nInsertion Success!!!\n");

if(front == -1)

front = 0;

}
}

void deQueue()
{

if(front == -1 && rear == -1)
printf("\nCircular Queue is Empty! Deletion is not possible!!!\n");

else{

printf("\nDeleted element : %d\n",cQueue[front++]);
if(front == SIZE)

front = 0;

if(front-1 == rear)

front = rear = -1;

}
}

void display()
{

if(front == -1)
printf("\nCircular Queue is Empty!!!\n");

else{

int i = front;

printf("\nCircular Queue Elements are : \n");

if(front <= rear){

while(i <= rear)

printf("%d\t",cQueue[i++]);
}

else{

}

}

}

while(i <= SIZE - 1)

printf("%d\t", cQueue[i++]);

i = 0;

while(i <= rear)
printf("%d\t",cQueue[i++]);

Double Ended Queue (Dequeue)

Double Ended Queue is also a Queue data structure in which the insertion and deletion

NARAYANA ENGINEERING COLLEGE | GUDUR Page 74

operations are performed at both the ends (front and rear). That means, we can insert at both

front and rear positions and can delete from both front and rear positions.

Double Ended Queue can be represented in TWO ways, those are as follows...

1. Input Restricted Double Ended Queue

2. Output Restricted Double Ended Queue

Input Restricted Double Ended Queue

In input restricted double ended queue, the insertion operation is performed at only one end and

deletion operation is performed at both the ends.

Output Restricted Double Ended Queue

In output restricted double ended queue, the deletion operation is performed at only one end and

insertion operation is performed at both the ends.

#include<stdio.h>

#include<conio.h>

#define SIZE 100

void enQueue(int);

int deQueueFront();

int deQueueRear();

void enQueueRear(int);

void enQueueFront(int);

void display();

int queue[SIZE];

int rear = 0, front = 0;

int main()

{

NARAYANA ENGINEERING COLLEGE | GUDUR Page 75

char ch;

int choice1, choice2, value;

printf("\n******* Type of Double Ended Queue *******\n");

do

{

printf("\n1.Input-restricted deque \n");

printf("2.output-restricted deque \n");

printf("\nEnter your choice of Queue Type : ");

scanf("%d",&choice1);

switch(choice1)

{

case 1:

printf("\nSelect the Operation\n");

printf("1.Insert\n2.Delete from Rear\n3.Delete from Front\n4. Display");
do

{

printf("\nEnter your choice for the operation in c deque: ");

scanf("%d",&choice2);

switch(choice2)
{

case 1: enQueueRear(value);

display();

break;

case 2: value = deQueueRear();

printf("\nThe value deleted is %d",value);

display();

break;

case 3: value=deQueueFront();
printf("\nThe value deleted is %d",value);

display();

break;

case 4: display();

break;

default:printf("Wrong choice");

}
printf("\nDo you want to perform another operation (Y/N): ");

ch=getch();
}while(ch=='y'||ch=='Y');

getch();

break;
case 2 :

printf("\n---- Select the Operation ---- \n");

printf("1. Insert at Rear\n2. Insert at Front\n3. Delete\n4. Display");

do

{
printf("\nEnter your choice for the operation: ");
scanf("%d",&choice2);

switch(choice2)

{

case 1: enQueueRear(value);

NARAYANA ENGINEERING COLLEGE | GUDUR Page 76

display();

break;

case 2: enQueueFront(value);

display();

break;

case 3: value = deQueueFront();

printf("\nThe value deleted is %d",value);

display();

break;
case 4: display();

break;

default:printf("Wrong choice");

}

printf("\nDo you want to perform another operation (Y/N): ");

ch=getch();

} while(ch=='y'||ch=='Y');
getch();

break ;

}

printf("\nDo you want to continue(y/n):");
ch=getch();

}while(ch=='y'||ch=='Y');

}

void enQueueRear(int value)

{

char ch;

if(front == SIZE/2)

{

printf("\nQueue is full!!! Insertion is not possible!!! ");

return;

}

do

{

printf("\nEnter the value to be inserted:");

scanf("%d",&value);

queue[front] = value;
front++;

printf("Do you want to continue insertion Y/N");
ch=getch();

}while(ch=='y');

}

void enQueueFront(int value)

{

char ch;

if(front==SIZE/2)

{
printf("\nQueue is full!!! Insertion is not possible!!!");
return;

}

NARAYANA ENGINEERING COLLEGE | GUDUR Page 77

do

{

printf("\nEnter the value to be inserted:");

scanf("%d",&value);

rear--;

queue[rear] = value;
printf("Do you want to continue insertion Y/N");

ch = getch();

}

while(ch == 'y');

}

int deQueueRear()

{

int deleted;
if(front == rear)

{

printf("\nQueue is Empty!!! Deletion is not possible!!!");

return 0;

}

front--;

deleted = queue[front+1];

return deleted;

}

int deQueueFront()

{

int deleted;

if(front == rear)

{

printf("\nQueue is Empty!!! Deletion is not possible!!!");

return 0;

}

rear++;

deleted = queue[rear-1];

return deleted;

}

void display()

{

int i;

if(front == rear)

printf("\nQueue is Empty!!! Deletion is not possible!!!")
else{

printf("\nThe Queue elements are:");
for(i=rear; i < front; i++)

{

printf("%d\t ",queue[i]);

}

}

}

NARAYANA ENGINEERING COLLEGE | GUDUR Page 78

Applications of Queue

Queue, as the name suggests is used whenever we need to manage any group of objects in an

order in which the first one coming in, also gets out first while the others wait for their turn, like

in the following scenarios:

1. Serving requests on a single shared resource, like a printer, CPU task scheduling etc.

2. In real life scenario, Call Center phone systems uses Queues to hold people calling them

in an order, until a service representative is free.

3. Handling of interrupts in real-time systems. The interrupts are handled in the same order

as they arrive i.e First come first served.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 79

UNIT-3
Tree Terminology

In linear data structure, data is organized in sequential order and in non-linear data structure, data

is organized in random order. Tree is a very popular data structure used in wide range of

applications. A tree data structure can be defined as follows...

A tree data structure can also be defined as follows...

In tree data structure, every individual element is called as Node. Node in a tree data structure,
stores the actual data of that particular element and link to next element in hierarchical structure.

In a tree data structure, if we have N number of nodes then we can have a maximum of N-

1 number of links.

Example

Terminology

In a tree data structure, we use the following terminology...

1. Root

In a tree data structure, the first node is called as Root Node. Every tree must have root node.

We can say that root node is the origin of tree data structure. In any tree, there must be only one

root node. We never have multiple root nodes in a tree.

2. Edge

In a tree data structure, the connecting link between any two nodes is called as EDGE. In a tree

with 'N' number of nodes there will be a maximum of 'N-1' number of edges.

Tree data structure is a collection of data (Node) which is organized in hierarchical

structure and this is a recursive definition

Tree is a non-linear data structure which organizes data in hierarchical structure and this

is a recursive definition.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 80

3. Parent

In a tree data structure, the node which is predecessor of any node is called as PARENT NODE.

In simple words, the node which has branch from it to any other node is called as parent node.

Parent node can also be defined as "The node which has child / children".

4. Child

In a tree data structure, the node which is descendant of any node is called as CHILD Node. In

simple words, the node which has a link from its parent node is called as child node. In a tree,

any parent node can have any number of child nodes. In a tree, all the nodes except root are child

nodes.

5. Siblings

In a tree data structure, nodes which belong to same Parent are called as SIBLINGS. In simple

words, the nodes with same parent are called as Sibling nodes.

6. Leaf

In a tree data structure, the node which does not have a child is called as LEAF Node. In simple

words, a leaf is a node with no child.

In a tree data structure, the leaf nodes are also called as External Nodes. External node is also a
node with no child. In a tree, leaf node is also called as 'Terminal' node.

7. Internal Nodes

In a tree data structure, the node which has atleast one child is called as INTERNAL Node. In

simple words, an internal node is a node with atleast one child.

In a tree data structure, nodes other than leaf nodes are called as Internal Nodes.

The root node is also said to be Internal Node if the tree has more than one node. Internal

nodes are also called as 'Non-Terminal' nodes.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 81

8. Degree

In a tree data structure, the total number of children of a node is called as DEGREE of that

Node. In simple words, the Degree of a node is total number of children it has. The highest

degree of a node among all the nodes in a tree is called as 'Degree of Tree'

9. Level

In a tree data structure, the root node is said to be at Level 0 and the children of root node are at

Level 1 and the children of the nodes which are at Level 1 will be at Level 2 and so on... In

simple words, in a tree each step from top to bottom is called as a Level and the Level count

starts with '0' and incremented by one at each level (Step).

10. Height

In a tree data structure, the total number of egdes from leaf node to a particular node in the

longest path is called as HEIGHT of that Node. In a tree, height of the root node is said to

be height of the tree. In a tree, height of all leaf nodes is '0'.

11. Depth

In a tree data structure, the total number of egdes from root node to a particular node is called

as DEPTH of that Node. In a tree, the total number of edges from root node to a leaf node in the

longest path is said to be Depth of the tree. In simple words, the highest depth of any leaf node

in a tree is said to be depth of that tree. In a tree, depth of the root node is '0'.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 82

12. Path

In a tree data structure, the sequence of Nodes and Edges from one node to another node is called

as PATH between that two Nodes. Length of a Path is total number of nodes in that path. In

below example the path A - B - E - J has length 4.

13. Sub Tree

In a tree data structure, each child from a node forms a subtree recursively. Every child node will

form a subtree on its parent node.

Binary Tree and types

In a normal tree, every node can have any number of children. Binary tree is a special type of

tree data structure in which every node can have a maximum of 2 children. One is known as left

child and the other is known as right child.

In a binary tree, every node can have either 0 children or 1 child or 2 children but not more than
2 children.

Example

There are different types of binary trees and they are...

A tree in which every node can have a maximum of two children is called as Binary Tree.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 83

1. Strictly Binary Tree

In a binary tree, every node can have a maximum of two children. But in strictly binary tree,

every node should have exactly two children or none. That means every internal node must have

exactly two children. A strictly Binary Tree can be defined as follows...

Strictly binary tree is also called as Full Binary Tree or Proper Binary Tree or 2-Tree

Strictly binary tree data structure is used to represent mathematical expressions.

Example

2. Complete Binary Tree

In a binary tree, every node can have a maximum of two children. But in strictly binary tree,

every node should have exactly two children or none and in complete binary tree all the nodes

must have exactly two children and at every level of complete binary tree there must be

2level number of nodes. For example at level 2 there must be 22 = 4 nodes and at level 3 there

must be 23 = 8 nodes.

Complete binary tree is also called as Perfect Binary Tree

A binary tree in which every internal node has exactly two children and all leaf nodes are

at same level is called Complete Binary Tree.

A binary tree in which every node has either two or zero number of children is called

Strictly Binary Tree

NARAYANA ENGINEERING COLLEGE | GUDUR Page 84

3. Extended Binary Tree

A binary tree can be converted into Full Binary tree by adding dummy nodes to existing nodes

wherever required.

In above figure, a normal binary tree is converted into full binary tree by adding dummy nodes
(In pink colour).

3. Skewed Binary Tree

If a tree which is dominated by left child node or right child node, is said to be a Skewed Binary

Tree.

In a skewed binary tree, all nodes except one have only one child node. The remaining node has

no child.

In a left skewed tree, most of the nodes have the left child without corresponding right child.

In a right skewed tree, most of the nodes have the right child without corresponding left child.

Binary Tree Representations

A binary tree data structure is represented using two methods. Those methods are as follows...

1. Array Representation

2. Linked List Representation

Consider the following binary tree...

The full binary tree obtained by adding dummy nodes to a binary tree is called as

Extended Binary Tree.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 85

1. Array Representation

In array representation of binary tree, we use a one dimensional array (1-D Array) to represent a

binary tree.

Consider the above example of binary tree and it is represented as follows...

To represent a binary tree of depth 'n' using array representation, we need one dimensional array

with a maximum size of 2n+1 - 1.

2. Linked List Representation

We use double linked list to represent a binary tree. In a double linked list, every node consists of

three fields. First field for storing left child address, second for storing actual data and third for

storing right child address.

In this linked list representation, a node has the following structure...

The above example of binary tree represented using Linked list representation is shown as

follows...

Binary Tree Traversals

When we wanted to display a binary tree, we need to follow some order in which all the nodes of

that binary tree must be displayed. In any binary tree displaying order of nodes depends on the

traversal method.

There are three types of binary tree traversals.

1. In - Order Traversal

2. Pre - Order Traversal

3. Post - Order Traversal

Consider the following binary tree...

1. In - Order Traversal (leftChild - root - rightChild)

In In-Order traversal, the root node is visited between left child and right child. In this traversal,

the left child node is visited first, then the root node is visited and later we go for visiting right

child node. This in-order traversal is applicable for every root node of all subtrees in the tree.

This is performed recursively for all nodes in the tree.

Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree Traversal.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 86

In the above example of binary tree, first we try to visit left child of root node 'A', but A's left

child is a root node for left subtree. so we try to visit its (B's) left child 'D' and again D is a root

for subtree with nodes D, I and J. So we try to visit its left child 'I' and it is the left most child. So

first we visit 'I' then go for its root node 'D' and later we visit D's right child 'J'. With this we

have completed the left part of node B. Then visit 'B' and next B's right child 'F' is visited. With

this we have completed left part of node A. Then visit root node 'A'. With this we have

completed left and root parts of node A. Then we go for right part of the node A. In right of A

again there is a subtree with root C. So go for left child of C and again it is a subtree with root G.

But G does not have left part so we visit 'G' and then visit G's right child K. With this we have

completed the left part of node C. Then visit root node 'C' and next visit C's right

child 'H' which is the right most child in the tree so we stop the process.

That means here we have visited in the order of I - D - J - B - F - A - G - K - C - H using In-
Order Traversal.

In-Order Traversal for above example of binary tree is

I - D - J - B - F - A - G - K - C - H

2. Pre - Order Traversal (root - leftChild - rightChild)

In Pre-Order traversal, the root node is visited before left child and right child nodes. In this

traversal, the root node is visited first, then its left child and later its right child. This pre-order

traversal is applicable for every root node of all subtrees in the tree.

In the above example of binary tree, first we visit root node 'A' then visit its left child 'B' which

is a root for D and F. So we visit B's left child 'D' and again D is a root for I and J. So we visit

D's left child 'I' which is the left most child. So next we go for visiting D's right child 'J'. With

this we have completed root, left and right parts of node D and root, left parts of node B. Next

visit B's right child 'F'. With this we have completed root and left parts of node A. So we go for

A's right child 'C' which is a root node for G and H. After visiting C, we go for its left

child 'G' which is a root for node K. So next we visit left of G, but it does not have left child so

we go for G's right child 'K'. With this we have completed node C's root and left parts. Next visit

C's right child 'H' which is the right most child in the tree. So we stop the process.

That means here we have visited in the order of A-B-D-I-J-F-C-G-K-H using Pre-Order

Traversal.

Pre-Order Traversal for above example binary tree is

A - B - D - I - J - F - C - G - K - H

2. Post - Order Traversal (leftChild - rightChild - root)

In Post-Order traversal, the root node is visited after left child and right child. In this traversal,

left child node is visited first, then its right child and then its root node. This is recursively

performed until the right most node is visited.

Here we have visited in the order of I - J - D - F - B - K - G - H - C - A using Post-Order

Traversal.

Post-Order Traversal for above example binary tree is

I - J - D - F - B - K - G - H - C - A

Binary Search Tree

In a binary tree, every node can have maximum of two children but there is no order of nodes

based on their values. In binary tree, the elements are arranged as they arrive to the tree, from top

to bottom and left to right.

A binary tree has the following time complexities...

1. Search Operation - O(n)

2. Insertion Operation - O(1)

NARAYANA ENGINEERING COLLEGE | GUDUR Page 87

3. Deletion Operation - O(n)

To enhance the performance of binary tree, we use special type of binary tree known as Binary

Search Tree. Binary search tree mainly focus on the search operation in binary tree. Binary

search tree can be defined as follows...

In a binary search tree, all the nodes in left subtree of any node contains smaller values and all
the nodes in right subtree of that contains larger values as shown in following figure...

Example

The following tree is a Binary Search Tree. In this tree, left subtree of every node contains nodes

with smaller values and right subtree of every node contains larger values.

Every Binary Search Tree is a binary tree but all the Binary Trees need not to be binary

search trees.

Operations on a Binary Search Tree

The following operations are performed on a binary earch tree...

1. Search

2. Insertion

3. Deletion

Search Operation in BST

In a binary search tree, the search operation is performed with O(log n) time complexity. The

search operation is performed as follows...

 Step 1: Read the search element from the user

 Step 2: Compare, the search element with the value of root node in the tree.

 Step 3: If both are matching, then display "Given node found!!!" and terminate the

function

 Step 4: If both are not matching, then check whether search element is smaller or larger

than that node value.

 Step 5: If search element is smaller, then continue the search process in left subtree.

Binary Search Tree is a binary tree in which every node contains only smaller values in its

left subtree and only larger values in its right subtree.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 88

 Step 6: If search element is larger, then continue the search process in right subtree.

 Step 7: Repeat the same until we found exact element or we completed with a leaf node

 Step 8: If we reach to the node with search value, then display "Element is found" and

terminate the function.

 Step 9: If we reach to a leaf node and it is also not matching, then display "Element not

found" and terminate the function.

Insertion Operation in BST
In a binary search tree, the insertion operation is performed with O(log n) time complexity. In

binary search tree, new node is always inserted as a leaf node. The insertion operation is

performed as follows...

 Step 1: Create a newNode with given value and set its left and right to NULL.

 Step 2: Check whether tree is Empty.

 Step 3: If the tree is Empty, then set set root to newNode.

 Step 4: If the tree is Not Empty, then check whether value of newNode

is smaller or larger than the node (here it is root node).

 Step 5: If newNode is smaller than or equal to the node, then move to its left child. If

newNode is larger than the node, then move to its right child.

 Step 6: Repeat the above step until we reach to a leaf node (e.i., reach to NULL).

 Step 7: After reaching a leaf node, then isert the newNode as left child if newNode

is smaller or equal to that leaf else insert it as right child.

Deletion Operation in BST
In a binary search tree, the deletion operation is performed with O(log n) time complexity.

Deleting a node from Binary search tree has follwing three cases...

 Case 1: Deleting a Leaf node (A node with no children)

 Case 2: Deleting a node with one child

 Case 3: Deleting a node with two children

Case 1: Deleting a leaf node

We use the following steps to delete a leaf node from BST...

 Step 1: Find the node to be deleted using search operation

 Step 2: Delete the node using free function (If it is a leaf) and terminate the function.

Case 2: Deleting a node with one child

We use the following steps to delete a node with one child from BST...

 Step 1: Find the node to be deleted using search operation

 Step 2: If it has only one child, then create a link between its parent and child nodes.

 Step 3: Delete the node using free function and terminate the function.

Case 3: Deleting a node with two children

We use the following steps to delete a node with two children from BST...

 Step 1: Find the node to be deleted using search operation

 Step 2: If it has two children, then find the largest node in its left subtree (OR)

the smallest node in its right subtree.

 Step 3: Swap both deleting node and node which found in above step.

 Step 4: Then, check whether deleting node came to case 1 or case 2 else goto steps 2

 Step 5: If it comes to case 1, then delete using case 1 logic.

 Step 6: If it comes to case 2, then delete using case 2 logic.

 Step 7: Repeat the same process until node is deleted from the tree.

Example

Construct a Binary Search Tree by inserting the following sequence of numbers...

NARAYANA ENGINEERING COLLEGE | GUDUR Page 89

Graph is a collection of nodes and edges which connects nodes in the graph

10,12,5,4,20,8,7,15 and 13

Above elements are inserted into a Binary Search Tree as follows...

Graphs

Graph is a non linear data structure, it contains a set of points known as nodes (or vertices) and

set of linkes known as edges (or Arcs) which connets the vertices. A graph is defined as

follows...

Generally, a graph G is represented as G = (V , E), where V is set of vertices and E is set of
edges.

Example

The following is a graph with 5 vertices and 6 edges.
This graph G can be defined as G = (V , E)

Where V = {A,B,C,D,E} and E = {(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(E,D)}.

Graph Terminology

We use the following terms in graph data structure...

Graph is a collection of vertices and arcs which connects vertices in the graph

NARAYANA ENGINEERING COLLEGE | GUDUR Page 90

Vertex

A individual data element of a graph is called as Vertex. Vertex is also known as node. In above

example graph, A, B, C, D & E are known as vertices.

Edge

An edge is a connecting link between two vertices. Edge is also known as Arc. An edge is

represented as (startingVertex, endingVertex). For example, in above graph, the link between

vertices A and B is represented as (A,B). In above example graph, there are 7 edges (i.e., (A,B),

(A,C), (A,D), (B,D), (B,E), (C,D), (D,E)).

Edges are three types.

1. Undirected Edge - An undirected egde is a bidirectional edge. If there is a undirected

edge between vertices A and B then edge (A , B) is equal to edge (B , A).

2. Directed Edge - A directed egde is a unidirectional edge. If there is a directed edge

between vertices A and B then edge (A , B) is not equal to edge (B , A).

3. Weighted Edge - A weighted egde is an edge with cost on it.

Undirected Graph

A graph with only undirected edges is said to be undirected graph.

Directed Graph

A graph with only directed edges is said to be directed graph.

Mixed Graph

A graph with undirected and directed edges is said to be mixed graph.

End vertices or Endpoints

The two vertices joined by an edge are called the end vertices (or endpoints) of the edge.

Origin

If an edge is directed, its first endpoint is said to be origin of it.

Destination

If an edge is directed, its first endpoint is said to be origin of it and the other endpoint is said to

be the destination of the edge.

Adjacent

If there is an edge between vertices A and B then both A and B are said to be adjacent. In other

words, Two vertices A and B are said to be adjacent if there is an edge whose end vertices are A

and B.

Incident

An edge is said to be incident on a vertex if the vertex is one of the endpoints of that edge.

Outgoing Edge

A directed edge is said to be outgoing edge on its orign vertex.

Incoming Edge

A directed edge is said to be incoming edge on its destination vertex.

Degree

Total number of edges connected to a vertex is said to be degree of that vertex.

Indegree

Total number of incoming edges connected to a vertex is said to be indegree of that vertex.

Outdegree

Total number of outgoing edges connected to a vertex is said to be outdegree of that vertex.

Parallel edges or Multiple edges

If there are two undirected edges to have the same end vertices, and for two directed edges to

have the same origin and the same destination. Such edges are called parallel edges or multiple

edges.

Self-loop

NARAYANA ENGINEERING COLLEGE | GUDUR Page 91

An edge (undirected or directed) is a self-loop if its two endpoints coincide.

Simple Graph

A graph is said to be simple if there are no parallel and self-loop edges.

Path

A path is a sequence of alternating vertices and edges that starts at a vertex and ends at a vertex

such that each edge is incident to its predecessor and successor vertex.

Graph Representations

Graph data structure is represented using following representations...

1. Adjacency Matrix

2. Incidence Matrix

3. Adjacency List

Adjacency Matrix

In this representation, graph can be represented using a matrix of size total number of vertices by

total number of vertices. That means if a graph with 4 vertices can be represented using a matrix

of 4X4 class. In this matrix, rows and columns both represents vertices. This matrix is filled with

either 1 or 0. Here, 1 represents there is an edge from row vertex to column vertex and 0

represents there is no edge from row vertex to column vertex.

For example, consider the following undirected graph representation...

Directed graph representation...

Incidence Matrix

In this representation, graph can be represented using a matrix of size total number of vertices by

total number of edges. That means if a graph with 4 vertices and 6 edges can be represented

using a matrix of 4X6 class. In this matrix, rows represents vertices and columns represents

edges. This matrix is filled with either 0 or 1 or -1. Here, 0 represents row edge is not connected

to column vertex, 1 represents row edge is connected as outgoing edge to column vertex and -1

represents row edge is connected as incoming edge to column vertex.

For example, consider the following directed graph representation...

NARAYANA ENGINEERING COLLEGE | GUDUR Page 92

Adjacency List

In this representation, every vertex of graph contains list of its adjacent vertices.

For example, consider the following directed graph representation implemented using linked

list...

This representation can also be implemented using array as follows..

Graph Traversals - DFS

Graph traversal is technique used for searching a vertex in a graph. The graph traversal is also

used to decide the order of vertices to be visit in the search process. A graph traversal finds the

egdes to be used in the search process without creating loops that means using graph traversal we

visit all verticces of graph without getting into looping path.

There are two graph traversal techniques and they are as follows...

1. DFS (Depth First Search)

2. BFS (Breadth First Search)

DFS (Depth First Search)

DFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a graph

without any loops. We use Stack data structure with maximum size of total number of vertices

in the graph to implement DFS traversal of a graph.

We use the following steps to implement DFS traversal...

 Step 1: Define a Stack of size total number of vertices in the graph.

 Step 2: Select any vertex as starting point for traversal. Visit that vertex and push it on

to the Stack.

 Step 3: Visit any one of the adjacent vertex of the verex which is at top of the stack

which is not visited and push it on to the stack.

 Step 4: Repeat step 3 until there are no new vertex to be visit from the vertex on top of

the stack.

 Step 5: When there is no new vertex to be visit then use back tracking and pop one

vertex from the stack.

 Step 6: Repeat steps 3, 4 and 5 until stack becomes Empty.

 Step 7: When stack becomes Empty, then produce final spanning tree by removing

unused edges from the graph

Back tracking is coming back to the vertex from which we came to current vertex.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 93

Example

5) Explain about Graph Traversals - BFS

NARAYANA ENGINEERING COLLEGE | GUDUR Page 94

Graph traversal is technique used for searching a vertex in a graph. The graph traversal is also

used to decide the order of vertices to be visit in the search process. A graph traversal finds the

egdes to be used in the search process without creating loops that means using graph traversal we

visit all verticces of graph without getting into looping path.

There are two graph traversal techniques and they are as follows...

1. DFS (Depth First Search)

2. BFS (Breadth First Search)

BFS (Breadth First Search)

BFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a graph

without any loops. We use Queue data structure with maximum size of total number of vertices

in the graph to implement BFS traversal of a graph.

We use the following steps to implement BFS traversal...

 Step 1: Define a Queue of size total number of vertices in the graph.

 Step 2: Select any vertex as starting point for traversal. Visit that vertex and insert it

into the Queue.

 Step 3: Visit all the adjacent vertices of the verex which is at front of the Queue which is

not visited and insert them into the Queue.

 Step 4: When there is no new vertex to be visit from the vertex at front of the Queue then

delete that vertex from the Queue.

 Step 5: Repeat step 3 and 4 until queue becomes empty.

 Step 6: When queue becomes Empty, then produce final spanning tree by removing

unused edges from the graph

Example

NARAYANA ENGINEERING COLLEGE | GUDUR Page 95

NARAYANA ENGINEERING COLLEGE | GUDUR Page 96

UNIT-4
SORTING:
Sorting is nothing but arranging the data in ascending or descending order. The
term sorting came into picture, as humans realised the importance of searching quickly.

There are so many things in our real life that we need to search for, like a particular record in

database, roll numbers in merit list, a particular telephone number in telephone directory, a

particular page in a book etc. All this would have been a mess if the data was kept unordered and

unsorted, but fortunately the concept of sorting came into existence, making it easier for

everyone to arrange data in an order, hence making it easier to search.

Different Sorting Algorithms

There are many different techniques available for sorting, differentiated by their efficiency and

space requirements. Following are some sorting techniques which we will be covering in next

few tutorials.

1. Bubble Sort

2. Insertion Sort

3. Selection Sort

4. Quick Sort

5. Merge Sort

6. Heap Sort

7. Shell Sort

1. Bubble sort:-

Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based algorithm

in which each pair of adjacent elements is compared and the elements are swapped if they are

not in order. This algorithm is not suitable for large data sets as its average and worst case

complexity are of Ο(n2) where n is the number of items.

How Bubble Sort Works?
We take an unsorted array for our example. Bubble sort takes Ο(n2) time so we're keeping it

short and precise.

Bubble sort starts with very first two elements, comparing them to check which one is greater.

In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we compare 33
with 27.

We find that 27 is smaller than 33 and these two values must be swapped.

The new array should look like this −

Next we compare 33 and 35. We find that both are in already sorted positions.

Then we move to the next two values, 35 and 10.

We know then that 10 is smaller 35. Hence they are not sorted.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 97

We swap these values. We find that we have reached the end of the array. After one iteration,

the array should look like this −

To be precise, we are now showing how an array should look like after each iteration. After the

second iteration, it should look like this −

Notice that after each iteration, at least one value moves at the end.

And when there's no swap required, bubble sorts learns that an array is completely sorted.

Now we should look into some practical aspects of bubble sort.

// Below we have a simple C program for bubble sort
#include <stdio.h>

void bubbleSort(int arr[], int n)

{

int i, j, temp;

for(i = 0; i < n; i++)

{

for(j = 0; j < n-i-1; j++)
{

if(arr[j] > arr[j+1])
{

// swap the elements

temp = arr[j];

arr[j] = arr[j+1];

arr[j+1] = temp;

}

}

}

// print the sorted array

printf("Sorted Array: ");

for(i = 0; i < n; i++)

{

printf("%d ", arr[i]);

}

}

int main()

{

int arr[100], i, n, step, temp;

// ask user for number of elements to be sorted

printf("Enter the number of elements to be sorted: ");

scanf("%d", &n);

// input elements if the array

for(i = 0; i < n; i++)

{

NARAYANA ENGINEERING COLLEGE | GUDUR Page 98

printf("Enter element no. %d: ", i+1);

scanf("%d", &arr[i]);

}

// call the function bubbleSort

bubbleSort(arr, n);

getch();

return 0;

}

2. Selection Sort

Selection Sort algorithm is used to arrange a list of elements in a particular order (Ascending or

Descending). In selection sort, the first element in the list is selected and it is compared

repeatedly with remaining all the elements in the list. If any element is smaller than the selected

element (for Ascending order), then both are swapped. Then we select the element at second

position in the list and it is compared with remaining all elements in the list. If any element is

smaller than the selected element, then both are swapped. This procedure is repeated till the

entire list is sorted.

Step by Step Process

The selection sort algorithm is performed using following steps...

 Step 1: Select the first element of the list (i.e., Element at first position in the list).

 Step 2: Compare the selected element with all other elements in the list.

 Step 3: For every comparision, if any element is smaller than selected element (for

Ascending order), then these two are swapped.

 Step 4: Repeat the same procedure with next position in the list till the entire list is

sorted.

Sorting Logic

Following is the sample code for selection sort...
//Selection sort logic

for(i=0; i<size; i++){

for(j=i+1; j<size; j++){

if(list[i] > list[j])

{
temp=list[i];

list[i]=list[j];

list[j]=temp;

}

}

}

Example

NARAYANA ENGINEERING COLLEGE | GUDUR Page 99

Complexity of the selection Sort Algorithm

To sort a unsorted list with 'n' number of elements we need to make ((n-1)+(n-2)+(n-3)+ +1)

= (n (n-1))/2 number of comparisions in the worst case. If the list already sorted, then it

requires 'n' number of comparisions.

Worst Case : O(n2)

Best Case : Ω(n2)

Average Case : Θ(n2)

Selection Sort Program in C Programming Language

#include<stdio.h>
#include<conio.h>

void main(){

int size,i,j,temp,list[100];

clrscr();

printf("Enter the size of the List: ");

scanf("%d",&size);

printf("Enter %d integer values: ",size);

for(i=0; i<size; i++)

scanf("%d",&list[i]);

//Selection sort logic

for(i=0; i<size; i++){

for(j=i+1; j<size; j++){

if(list[i] > list[j])

{

temp=list[i];

list[i]=list[j];

list[j]=temp;

}

}

}

printf("List after sorting is: ");

for(i=0; i<size; i++)

printf(" %d",list[i]);

getch();

}

NARAYANA ENGINEERING COLLEGE | GUDUR Page 100

3) Insertion Sort

Sorting is the process of arranging a list of elements in a particular order (Ascending or
Descending).

Insertion sort algorithm arranges a list of elements in a particular order. In insertion sort

algorithm, every iteration moves an element from unsorted portion to sorted portion until all the

elements are sorted in the list.

Step by Step Process

The insertion sort algorithm is performed using following steps...

 Step 1: Asume that first element in the list is in sorted portion of the list and remaining

all elements are in unsorted portion.

 Step 2: Consider first element from the unsorted list and insert that element into the

sorted list in order specified.

 Step 3: Repeat the above process until all the elements from the unsorted list are moved

into the sorted list.

Sorting Logic

Following is the sample code for insrtion sort...

//Insertion sort logic

for i = 1 to size-1 {

temp = list[i];
j = i;

while ((temp < list[j]) && (j > 0)) {
list[j] = list[j-1];

j = j - 1;

}

list[j] = temp;

}

Complexity of the Insertion Sort Algorithm

To sort a unsorted list with 'n' number of elements we need to make (1+2+3+...... +n-1) = (n (n-

1))/2 number of comparisions in the worst case. If the list already sorted, then it

requires 'n' number of comparisions.

Worst Case : O(n2)

Best Case : Ω(n)

Average Case : Θ(n2)

NARAYANA ENGINEERING COLLEGE | GUDUR Page 101

Insertion Sort Program in C Programming Language

#include<stdio.h>

#include<conio.h>

void main(){

int size, i, j, temp, list[100];

printf("Enter the size of the list: ");

scanf("%d", &size);

printf("Enter %d integer values: ", size);

for (i = 0; i < size; i++)

scanf("%d", &list[i]);

//Insertion sort logic

for (i = 1; i < size; i++) {
temp = list[i];

j = i - 1;

while ((temp < list[j]) && (j >= 0)) {

list[j + 1] = list[j];

j = j - 1;

}

list[j + 1] = temp;

}

printf("List after Sorting is: ");

for (i = 0; i < size; i++)

printf(" %d", list[i]);

getch();

}

4. Merge sort:-

Merge sort is a sorting technique based on divide and conquer technique. With worst-case time

complexity being Ο(n log n), it is one of the most respected algorithms.

Merge sort first divides the array into equal halves and then combines them in a sorted manner.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 102

How Merge Sort Works?

To understand merge sort, we take an unsorted array as the following −

We know that merge sort first divides the whole array iteratively into equal halves unless the

atomic values are achieved. We see here that an array of 8 items is divided into two arrays of

size 4.

This does not change the sequence of appearance of items in the original. Now we divide these
two arrays into halves.

We further divide these arrays and we achieve atomic value which can no more be divided.

Now, we combine them in exactly the same manner as they were broken down. Please note the

color codes given to these lists.

We first compare the element for each list and then combine them into another list in a sorted

manner. We see that 14 and 33 are in sorted positions. We compare 27 and 10 and in the target

list of 2 values we put 10 first, followed by 27. We change the order of 19 and 35 whereas 42

and 44 are placed sequentially.

In the next iteration of the combining phase, we compare lists of two data values, and merge

them into a list of found data values placing all in a sorted order.

After the final merging, the list should look like this −

Now we should learn some programming aspects of merge sorting.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 103

UNIT-5

Search

Search is a process of finding a value in a list of values. In other words, searching is the process

of locating given value position in a list of values.

Linear Search Algorithm (Sequential Search Algorithm)

Linear search algorithm finds given element in a list of elements with O(n) time complexity

where n is total number of elements in the list. This search process starts comparing of search

element with the first element in the list. If both are matching then results with element found

otherwise search element is compared with next element in the list. If both are matched, then the

result is "element found". Otherwise, repeat the same with the next element in the list until

search element is compared with last element in the list, if that last element also doesn't match,

then the result is "Element not found in the list". Thatmeans, the search element is compared

with element by element in the list.

Linear search is implemented using following steps...

 Step 1: Read the search element from the user

 Step 2: Compare, the search element with the first element in the list.

 Step 3: If both are matching, then display "Given element found!!!" and terminate the

function

 Step 4: If both are not matching, then compare search element with the next element in

the list.

 Step 5: Repeat steps 3 and 4 until the search element is compared with the last element in

the list.

 Step 6: If the last element in the list is also doesn't match, then display "Element not

found!!!" and terminate the function.

Example

Consider the following list of element and search element...

NARAYANA ENGINEERING COLLEGE | GUDUR Page 104

NARAYANA ENGINEERING COLLEGE | GUDUR Page 105

Linear Search Program in C Programming Language

#include<stdio.h>

#include<conio.h>

void main(){

int list[20],size,i,sElement;

printf("Enter size of the list: ");

scanf("%d",&size);

printf("Enter any %d integer values: ",size);

for(i = 0; i < size; i++)

scanf("%d",&list[i]);

printf("Enter the element to be Search: ");
scanf("%d",&sElement);

// Linear Search Logic

for(i = 0; i < size; i++)

{

if(sElement == list[i])
{

printf("Element is found at %d index", i);

break;

}
}

if(i == size)
printf("Given element is not found in the list!!!");

getch();

}

Binary Search Algorithm

Binary search algorithm finds given element in a list of elements with O(log n) time complexity

where nis total number of elements in the list. The binary search algorithm can be used with only

sorted list of element. That means, binary search can be used only with list of element which are

already arranged in a order. The binary search can not be used for list of element which are in

random order. This search process starts comparing of the search element with the middle

element in the list. If both are matched, then the result is "element found". Otherwise, we check

whether the search element is smaller or larger than the middle element in the list. If the search

element is smaller, then we repeat the same process for left sublist of the middle element. If the

search element is larger, then we repeat the same process for right sublist of the middle element.

We repeat this process until we find the search element in the list or until we left with a sublist of

only one element. And if that element also doesn't match with the search element, then the result

is "Element not found in the list".

NARAYANA ENGINEERING COLLEGE | GUDUR Page 106

Binary search is implemented using following steps...

 Step 1: Read the search element from the user

 Step 2: Find the middle element in the sorted list

 Step 3: Compare, the search element with the middle element in the sorted list.

 Step 4: If both are matching, then display "Given element found!!!" and terminate the

function

 Step 5: If both are not matching, then check whether the search element is smaller or

larger than middle element.

 Step 6: If the search element is smaller than middle element, then repeat steps 2, 3, 4 and

5 for the left sublist of the middle element.

 Step 7: If the search element is larger than middle element, then repeat steps 2, 3, 4 and 5

for the right sublist of the middle element.

 Step 8: Repeat the same process until we find the search element in the list or until

sublist contains only one element.

 Step 9: If that element also doesn't match with the search element, then display "Element

not found in the list!!!" and terminate the function.

Example

Consider the following list of element and search element...

NARAYANA ENGINEERING COLLEGE | GUDUR Page 107

NARAYANA ENGINEERING COLLEGE | GUDUR Page 108

Binary Search Program in C Programming Language

#include<stdio.h>

#include<conio.h>

void main()

{

int first, last, middle, size, i, sElement, list[100];

clrscr();

printf("Enter the size of the list: ");

scanf("%d",&size);

printf("Enter %d integer values in Assending order\n", size);

for (i = 0; i < size; i++)

scanf("%d",&list[i]);

printf("Enter value to be search: ");

scanf("%d", &sElement);

first = 0;

last = size - 1;

middle = (first+last)/2;

while (first <= last) {

if (list[middle] < sElement)

first = middle + 1;

else if (list[middle] == sElement) {

printf("Element found at index %d.\n",middle);

break;

}

else

last = middle - 1;

middle = (first + last)/2;

}

if (first > last)

printf("Element Not found in the list.");
getch();

}

Hash Tables

NARAYANA ENGINEERING COLLEGE | GUDUR Page 109

Hash table is a data structure used for storing and retrieving data quickly. Insertion of data in the
hash table is based on the key value. Hence every entry in the hash table is associate with some key.
For example, for an employee record in the hash table employee ID will works as a key.

 Using the hash key the required piece of data can be searched in the hash table by few or
more key comparisons. The searching time is dependent upon the size of the hash table.

 The effective representation of dictionary can be done using hash table. We can place the
dictionary entries in the hash table using hash function.

Buck and Home bucket

The hash function H(key) is used to map a several dictionary entries in the hash table. Each function
of hash table is called bucket. The function H(k) is home bucket for the dictionary with pail whose
value is key.

 5

15 4
 3

10 2
 1
 0

Hash table

In the above diagram or hash table location 2 or 4 is called as home bucket and location 0,1,3,5 are
called as bucket.
Static and Dynamic hashing

There are two types of hashing. They are:
1. Static hashing
2. Dynamic hashing
Static hashing
Static hashing is a hashing technique in which keys are stored in which keys are stored in hash table with
fixed size.
Dynamic hashing

In this hashing table, the hash function is modified dynamically number of records grow.

Hash function
Hash function is a function which is used to put data into hash table. Hence one can use the same as

function to retrieve the data from hash table. Thus hash function is used implement a hash table.
There are several types of hash function.

1. Division hash function method
2. Mid square hash function method
3. Multiplication or multiplicative hash function
4. Digit folding or folding hash function

Division hash function method

The hash function depends upon the remainder of the division. Typically the division is the table length.
Syntax or Formula
H (key) = K % table size
Example:-

NARAYANA ENGINEERING COLLEGE | GUDUR Page 110

Insert following values or records
54, 72, 89, 37 into hash table. The hash table size is 10.

The following determines hash table with size 10.

 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

The record 54 is inserted into above hash table by using division hash function.
H (key)=k % table size

H(Key) =54%10=4
The record 54 is inserted at 4th location.
The record 72 is inserted into above hash table by using division hash function.

H (key)=k % table size
H(Key)=72%10=2

The record 72 is inserted at 2nd location.
The record 89 is inserted into above hash table by using division hash function.

H (key)=k % table size
H(Key) =89%10=9

The record 89 is inserted at 9th position or location.

The record 37 is inserted into above hash table by using division hash function.
H (key)=k % table size

H(Key) =37%10=7
The record 37 is inserted at 7th position.
The following hash table determines the inserting records 54, 72, 89, 37 into hash table.

9

8

7
6

5

4

3

2

1

0

89

37

54

72

NARAYANA ENGINEERING COLLEGE | GUDUR Page 111

Mid square hash function

In the mid square method, the key is squared and the middle or mid part of the result is used as index or
position or location.

Example the records 311, 3112, 3114 are inserted to hash table. Assume that hash table size is 1000.

Syntax or formula

H(Key) = K2

The record 3111 by using mid square.

H(key) =K2

= (3111)2

=9678321

783 is the middle part of 9678321. So, 783 is the index of 3111.

The record 3112 by using mid square

H (Key) = (3112)2

= 9684544

845 is the middle part of 9684544. So, 845 is the index of 3112.

The record 3113 by using mid square

H (Key) = (3113)2

= 9690769

907 is the middle part of 9690769. So, 907 is the index of 3113.

783

845

907

999

3111

3112

3113

NARAYANA ENGINEERING COLLEGE | GUDUR Page 112

Multiplicative hash function
The given record is multiplied by some constant value. The formula computing hash key is
H (Key) = floor (P*(fractional part of key*A))

Where ‘P’ is an integer constant and ‘A’ is real constant.
Donald Knuth suggested to use constant A = 0.61803398987.

Example:-
Insert the following records 107, 108, 109, 110 into hash table . Here P =50.
107 inserted into hash table by using multiplicative hash function.
H (Key) = floor (P*(fractional part of key*A))

= floor (50*(107* 0.61803398987)
= floor (3306.4818)
=3306

108 inserted into hash table by using multiplicative hash function.
H (Key) = floor (50*(108* 0.61803398987)

= floor (3337.3835)
= 3337

109 inserted into hash table by using multiplicative hash function.
H (Key) = floor (50*(109* 0.61803398987)

= floor (3368.2852)
= 3368

110 inserted into hash table by using multiplicative hash function.
H (Key) = floor (50*(110* 0.61803398987)

= floor (3399.1869)
= 3399

The following diagram determines the 107, 108, 109, 110 values into hash table.

0

3306

3337

3368

3399

3999

Digit folding or folding hash function

The key value is divided into separate parts and using some simple operation this parts are combined
to produce hash key.

Example:-

107

108

109

110

NARAYANA ENGINEERING COLLEGE | GUDUR Page 113

Consider the record 1, 2, 3, 6, 5, 4, 1, 2 then it is divided into separate parts 123, 654, 12 and this all are
added together.

H (Key) = 123+ 654 + 12 +789

The record 123, 654, 12 will be placed at a location 789 in the hash table.

Collision Resolution Technique

If collision occurs then it should be handled by applying some techniques. Such techniques are called
collision resolution technique.

The goal of collision resolution techniques is to minimize collisions. There are two methods of
handling collisions.

1. Open hashing or Separate Chain hashing

2. Closed hashing or Open addressing

The difference between open hashing and closed hashing is that in Open hashing the collision are
stored outside table and in Closed hashing the collisions are stored in the same table at some another
slot.

Open hashing

In collision handling method chaining is a concept which introduces an additional fields with data i.e.,
chain. A separate chain table is maintained for colliding data when collision occurs then linked list is
maintained at home bucket.

Example:-

Consider the keys to be placed in the in their home buckets are 131, 3, 4, 21, 61, 24, 7, 97, 8, 9.

A chain is maintained for colliding elements. For distance 131 has a home bucket index 1. Similarly
keys 21 and 61 demand for home bucket index 1. Hence a chain is maintained at index 1. Similarly the
chain at index 4 and 7 is maintained.

NARAYANA ENGINEERING COLLEGE | GUDUR Page 114

Closed hashing

Closed hashing collision resolution strategy or technique which users following technique.

1. Linear probing

2. Quadratic probing

3. Double probing or Double hashing

Linear probing

This is the easiest method of handling collision. When collision occurs i.e., when two records demand
for the same home bucket in the hash table then collision can be solved by placing the second record
linearly down whenever the empty bucket is found. When use linear probing the hash table is
represented as a one dimensional array with indices that range from 0 to desired table size-1.

Example:-

Consider that following keys are to be inserted in the hash table 131, 4, 8, 7, 21, 5, 31, 61, 9, 29.The
hash table size is 10.

Initially we will put the following keys in the hash table 131, 4, 8, 7.

We will use division hash function. That means that keys are placed using formula.

H (Key) = key % table size

For instance the element 131 can be placed at H (Key) = 131 % 10 =1.

Index 1 will be the home bucket for 131. Continuing in the fashion we will place 4,8,7.

0

1

2

3

4

5

6

7

8

9

Now the next to be inserted is 21. According to hash function H (Key) = 21 % 10 =1.

But the index 1 location already occupied with 131 i.e., collision occurs. To resolve this collision we
will linearly move down from 1 to empty location is found. Therefore 21 will be placed at index 2. If the
next element is 5 then we get home bucket for 5 as index 5 this bucket is empty so, we will put the

element 5 at index 5.

Null

131

Null
Null

4

Null

Null

7

8
Null

NARAYANA ENGINEERING COLLEGE | GUDUR Page 115

0

1

2

3

4

5

6

7
8

9

After placing record keys 31, 61 the hash table will be

0

1

2

3

4

5

6

7

8

9

The next record key that comes is 9. According to decision as function it demands for the home bucket
9. Hence we will place 9 at index 9.

0

1

2
3

4

5

6

7

8
9

Now the next final record key is 29 and it hashes a key 9. But home bucket 9 is already occupied.
And there is no next empty bucket as the table size is limited to index 9. The overflow occurs to handle
it we move back to bucket 0 and is the location over there is empty 29 will be placed at 0th index.

Null

131

21

Null

4
5

Null

7

8

Null

Null

131

21

31

4

5

61

7

8

Null

Null

131

21

31

4
5

61

7

8

9

NARAYANA ENGINEERING COLLEGE | GUDUR Page 116

0

1

2
3

4

5

6

7
8

9

Quadratic probing

Quadratic probing operates by taking original hash value and adding successive values of quadratic
polynomial to the stating value.

This method uses following formula.

H(Key) = (H (Key) = i2) % m

Where ‘m’ can be table size or any prime number.

Example: - If we have insert following elements in the hash table with table size 10.

37, 19, 55, 22, 17, 49, 87.

Initially we will put following keys into hash table.

37,19,55,22.

0

1

2

3

4

5

6

7

8

9

Now, if you want to place 17 a collision will be occurs 17. 17 % 10 = 7, but bucket 7 has already an
element 37. Hence we will apply quadratic probing to insert this record in the hash table.

H (Key) = (H (Key) = i2) % m

Consider I =0

H (key) = (17+02) % 10 = 17 % 10 = 7.

29

131

21

31

4
5

61

7

8

9

22

55

37

NARAYANA ENGINEERING COLLEGE | GUDUR Page 117

Then i=1

H (Key) = (17 + 12) % 10 =18 % 10 = 8.

The bucket 8 is empty. Hence we will place the element of the index 8.

Now if you want to place 49 a collision will be occur 49 % 10 = 9 and bucket 9 as already occupied
with 19. Hence we will applying quadratic probing to insert this record in the hash table.

Hi (Key) = (H (Key) + i2) % m

I =0

= (49 + 0) % 10 = 49 % 10 = 9

I = 1

= (49 + 12) % 10 = 50 % 10 = 0

0

1

2

3

4

5

6

7

8

9

The bucket 0 is empty.

Hence the value 49 is inserted at a 0th position.

Now to place 87 we will use quadratic probing.

H(Key) = (87 + 02) % 10 = 87 % 10 = 7

H(Key) = (87 + 12) % 10 = 88 % 10 = 8

H(Key) = (87 + 22) % 10 = 91 % 10 = 1

0

1

2

3

4

5

6

7
8

9

49

22

55

37

17

19

49

87

22

55

37

17
19

NARAYANA ENGINEERING COLLEGE | GUDUR Page 118

Double probing or double hashing

Double hashing is a technique in which a second hash function is applied to key when a collision occur
by applying the second has function we will get number of positions from the point of Collision inserted.

By using following formulas we can find out the double hashing.

H1 (key) = k % table size

H2(key) = M - (K % M)

Where M is prime number smaller than the size of the table.

Example: consider the following elements to be placed in the Hash table of size 10.

37, 90, 45, 22, 17, 49, 55.

Inside Initially the elements using the formula for H1 (key). Insert 37, 90, 45, 22.

0

1
37 % 10 = 7 2

3
90 % 10 = 0 4

45 % 10 = 5 5
6

22 % 10 = 2 7

8
9

Now if 17 is to be inserted then

H1 (17) = 17 % 10 = 7

Here collision will be occur because 7th position already occupied with element 37 or record 37. So we
can apply second hash function to key.

H2 (key) = M-(K%M)

Here M is prime number smaller than the size of the table.

Let us prime number is M = 7

H2 (17) =7-(17%7)

= 7 - 3 = 4

That means we have to

insert the elements on 10 at 4 places from value 37 or 7th position.

90

22

45

37

NARAYANA ENGINEERING COLLEGE | GUDUR Page 119

0

1

2

3
4

5

6

7

8

9

17 will be placed at index 1.

Now to insert number 49 at location 9th position that is 49 % 10 = 9.

0

1

2

3

4

5

6

7

8

9

Now to insert number 55.

H1 (55) = 55 % 10 = 5 that is collision will be occur. Because the location 5 already occupied with 45. So,
we can apply second hash function.

H2 (55) = 7 - (55 % 7) = 7 - 6 = 1

That means we have to take one jump from index 5 to place 55.

0

1

2

3

4

5

6

7

8

9

90

17

22

45

37

90

17

22

45

37

49

90

17

22

45

55

37

49

NARAYANA ENGINEERING COLLEGE | GUDUR Page 120

Rehashing

Rehashing is a technique in which table is resized that is the size of table is double by creating a new
table. It is preferable if the total size of new table is a prime number. There are situation in which
rehashing is required.

i) When the table size is completely full.

ii) With Quadratic probing when the table is filled half.

iii) When insertion fail due to over flow.

In such situations, we have to transfer entries from old table to new table.

Example:

Consider we have to insert the elements 37, 90, 55, 22, 17, 49 and 87 the table size is 10 and will use
hash function.

H (key) = K % Table size

Initially insert following elements 37, 90, 55, 22

0

1

2

3

4

5

6

7

8

9

Now you can insert 17 into hash table. Here collision will be occur. Because the 7th location already
occupied with 37. So, by using linear probing the element 17 is insert at 8th position.

0

1

2

3

4

5

6

7
8

9

Now this table is almost full. So, next element 87 is not inserted into hash table because the hash

table is overflow. Hence we will rehashing by double the size for new table that becomes 20. But 20 is
not prime number we will prefer to make table size as 23 and new hash function will be

90

22

55

37

90

22

55

37

17

NARAYANA ENGINEERING COLLEGE | GUDUR Page 121

H (key) = k % 23

37 % 23 = 14

90 % 23 = 21

55 % 23 = 9

22 % 23 = 22

17 % 23 = 17

49 % 23 = 3

87 % 23 = 18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

49

55

37

17

87

90

22

