

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 1

LECTURE NOTES ON

DIGITAL LOGIC DESIGN

 (15A04306)

II B.TECH I SEMESTER

 (JNTUA-R15)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 2

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B. Tech II - I sem (Common to CSE & IT)

(15A04306) DIGITAL LOGIC DESIGN

UNIT I

BINARY SYSTEMS: Digital Systems, Binary Numbers, Number Base Conversions,

Octal and Hexadecimal Numbers, Compliments, Signed Binary Numbers, Binary Codes,

Binary Storage and Registers, Binary Logic.

BOOLEAN ALGEBRA AND LOGIC GATES: Basic Definitions, Axiomatic

Definition of Boolean Algebra, Basic Theorems and properties of Boolean Algebra,

Boolean Functions, Canonical and Standard Forms, Other Logic Operations, Digital

Logic Gates, Integrated Circuits.

UNIT II

GATE – LEVEL MINIMIZATION: The Map Method, Four Variable Map, Five-

Variable Map, Product of Sums Simplification, Don’t-Care Conditions, NAND and

NOR Implementation, Other Two Level Implementations, EX-OR Function, Other

Minimization Methods

UNIT III

COMBINATIONAL LOGIC: Combinational Circuits, Analysis

Procedure, Design Procedure, Binary Adder-Subtractor, Decimal

Adder, Binary Multiplier, Magnitude Comparator, Decoders, Encoders,

Multiplexers.

T Tu C

3 1 3

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 3

UNIT IV

SYNCHRONOUS SEQUENTIAL LOGIC: Sequential Circuits, Latches, Flip-Flops,

Analysis of Clocked Sequential Circuits, State Reduction and Assignment, Design

Procedure, Registers, Shift Registers, Ripple Counters, Synchronous Counters, Other

counters.

UNIT V

MEMORY AND PROGRAMMABLE LOGIC: Random access memory, memory

decoding, Error Detection and Correction, Read-only Memory, Programmable Logic

Array, Programmable Array Logic.

DIGITAL LOGIC CIRCUITS: RTL and DTL Circuits, Transistor-Transistor Logic

(TTL), Emitter- Coupled Logic (ECL), MOS, CMOS Logic, Comparisons of Logic

Families.

TEXT BOOKS:

1. Digital Design, M.Morris Mano & Micheal D. Ciletti, Pearson, 5th Edition, 2013.

2. Digital Logic & State Machine Design, David J. Comer, Oxford

University Press, 3rd Reprinted Indian Edition, 2012.

REFERENCES:

1. Digital Logic Design, R.D. Sudhakar Samuel, Elsevier

2. Fundamentals of Logic Design, 5/e, Roth, Cengage

3. Switching and Finite Automata Theory,3/e,Kohavi, Jha, Cambridge.

4. Digital Logic Design, Leach,

Malvino, Saha,TMH Modern Digital

Electronics, R.P. Jain, TMH

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 4

(1×1000) + (2×100) + (3×10) + (4×l)

UNIT I

NUMBER SYSTEM & BOOLEAN ALGEBRA

A digital system can understand positional number system only where there are a few

symbols called digits and these symbols represent different values depending on the

position they occupy in the number.

A value of each digit in a number can be determined using

 The digit

 The position of the digit in the number

 The base of the number system (where base is defined as the total number of

digits available in the number system).

Decimal Number System

The number system that we use in our day-to-day life is the decimal number system.

Decimal number system has base 10 as it uses 10 digits from 0 to 9. In decimal number

system, the successive positions to left of the decimal point represents units, tens,

hundreds, thousands and so on.

Each position represents a specific power of the base (10). For example, the decimal

number 1234 consists of the digit 4 in the units position, 3 in the tens position, 2 in the

hundreds position, and 1 in the thousands position, and its value can be written as

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 5

As a computer programmer or an IT professional, you should understand the

following number systems which are frequently used in computers.

step Number System & Description

1 Binary Number System Base 2. Digits used: 0, 1

2 Octal Number System Base 8. Digits used: 0 to 7

3 Hexadecimal Number System Base 16. Digits used: 0

9, Letters used: A- F

Binary Number System

Characteristics

 Uses two digits, 0 and 1.

 Also called base 2 number system

 Each position in a binary number represents a 0 power of the base (2). Example: 20

 Last position in a binary number represents an x power of the base (2). Example:

2x where x represents the last position - 1.

(1×103) + (2×102) + (3×101) + (4×l00)

1000 + 200 + 30 + 1

1234

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 6

Example

Binary Number: 101012

Calculating Decimal Equivalent –

Step Binary Number Decimal Number

Step 1 101012 ((1 × 24) + (0 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10

Step 2 101012 (16 + 0 + 4 + 0 + 1)10

Step 3 101012 2110

Note: 101012is normally written as 10101.

Octal Number System

Characteristics

 Uses eight digits, 0,1,2,3,4,5,6,7.

 Also called base 8 number system

 Each position in an octal number represents a 0 power of the base (8). Example: 80

 Last position in an octal number represents an x power of the base (8). Example:

8x where x represents the last position - 1.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 7

Example

Octal Number − 125708

Calculating Decimal Equivalent –

Step Octal Number Decimal Number

Step 1

125708

((1 × 84) + (2 × 83) + (5 × 82) + (7 × 81) + (0 × 80))10

Step 2 125708 (4096 + 1024 + 320 + 56 + 0)10

Step 3 125708 549610

Note: 125708is normally written as 12570.

Hexadecimal Number System

Characteristics

 Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

 Letters represents numbers starting from 10. A = 10, B = 11, C = 12, D = 13, E = 14, F =

15.

 Also called base16 number system.

 Each position in a hexadecimal number represents a 0 power of the base (16). Example 160.

 Last position in a hexadecimal number represents an x power of the base (16).

Example 16x where x represents the last position - 1.

Example:

Hexadecimal Number: 19FDE16

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 8

Calculating Decimal Equivalent −

Step Binary Number Decimal Number

Step 1 19FDE16 ((1 × 164) + (9 × 163) + (F × 162) + (D × 161) + (E × 160))10

Step 2 19FDE16 ((1 × 164) + (9 × 163) + (15 × 162) + (13 × 161) + (14 × 160))10

Step 3 19FDE16 (65536 + 36864 + 3840 + 208 + 14)10

Step 4 19FDE16 10646210

Note − 19FDE16 is normally written as 19FDE.

There are many methods or techniques which can be used to convert numbers from one base
to

another. We'll demonstrate here the following −

 Decimal to Other Base System

 Other Base System to Decimal

 Other Base System to Non-Decimal

 Shortcut method − Binary to Octal

 Shortcut method − Octal to Binary

 Shortcut method − Binary to Hexadecimal

 Shortcut method − Hexadecimal to Binary

Decimal to Other Base System
Steps

 Step 1 − Divide the decimal number to be converted by the value of the new base.

 Step 2 − Get the remainder from Step 1 as the rightmost digit (least significant digit) of

new

base number.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 9

 Step 3 − Divide the quotient of the previous divide by the new base.

 Step 4 − Record the remainder from Step 3 as the next digit (to the left) of the new

base

number.

Repeat Steps 3 and 4, getting remainders from right to left, until the quotient becomes zero

in Step 3. The last remainder thus obtained will be the Most Significant Digit (MSD) of the

new base number.

Example:

Decimal Number: 2910

Calculating Binary Equivalent −

Step Operation Result Remainder

Step 1 29 / 2 14 1

Step 2 14 / 2 7 0

Step 3 7 / 2 3 1

Step 4 3 / 2 1 1

Step 5 1 / 2 0 1

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order

so that the first remainder becomes the Least Significant Digit (LSD) and the last

remainder becomes the Most Significant Digit (MSD).

Decimal Number − 2910 = Binary Number − 111012.

Other Base System to Decimal System

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 10

Steps

 Step 1 − Determine the column (positional) value of each digit (this depends on the

position of

the digit and the base of the number system).

 Step 2 − Multiply the obtained column values (in Step 1) by the digits in the

corresponding columns.

 Step 3 − Sum the products calculated in Step 2. The total is the equivalent value in
decimal.

Example

Binary Number − 111012

Calculating Decimal Equivalent –

Step Binary Number Decimal Number

Step 1 111012 ((1 × 24) + (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10

Step 2 111012 (16 + 8 + 4 + 0 + 1)10

Step 3 111012 2910

Binary Number − 111012 = Decimal Number − 2910

Other Base System to Non-Decimal System

Steps

 Step 1 − Convert the original number to a decimal number (base 10).

 Step 2 − Convert the decimal number so obtained to the new base number.

Example

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 11

Octal Number − 258

Calculating Binary Equivalent −

Step 1 − Convert to Decimal

Step Octal Number Decimal Number

Step 1 258 ((2 × 81) + (5 × 80))10

Step 2 258 (16 + 5)10

Step 3 258 2110

Octal Number − 258 = Decimal Number − 2110

Step 2 − Convert Decimal to Binary

Step Operation Result Remainder

Step 1 21 / 2 10 1

Step 2 10 / 2 5 0

Step 3 5 / 2 2 1

Step 4 2 / 2 1 0

Step 5 1 / 2 0 1

Decimal Number − 2110 = Binary

Number − 101012 Octal Number − 258

= Binary Number − 101012

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 12

Shortcut method - Binary to Octal

Steps

 Step 1 − Divide the binary digits into groups of three (starting from the right).

 Step 2 − Convert each group of three binary digits to one octal digit.

Example

Binary Number − 101012

Calculating Octal Equivalent −

Step Binary Number Octal Number

Step 1 101012 010 101

Step 2 101012 28 58

Step 3 101012 258

Binary Number − 101012 = Octal Number − 258

Shortcut method - Octal to Binary

Steps

 Step 1 − Convert each octal digit to a 3 digit binary number (the octal digits may be

treated as

decimal for this conversion).

 Step 2 − Combine all the resulting binary groups (of 3 digits each) into a single binary

number.

Example

Octal Number − 258

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 13

Calculating Binary Equivalent −

Step Octal Number Binary Number

Step 1 258 210 510

Step 2 258 0102 1012

Step 3 258 0101012

Octal Number − 258 = Binary Number − 101012

Shortcut method - Binary to Hexadecimal

Steps

 Step 1 − Divide the binary digits into groups of four (starting from the right).

 Step 2 − Convert each group of four binary digits to one hexadecimal symbol.

Example

Binary Number − 101012

Calculating hexadecimal Equivalent −

Step Binary Number Hexadecimal Number

Step 1 101012 0001 0101

Step 2 101012 110 510

Step 3 101012 1516

Binary Number − 101012 = Hexadecimal Number − 1516

Shortcut method - Hexadecimal to Binary

Steps

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 14

 Step 1 − Convert each hexadecimal digit to a 4 digit binary number (the hexadecimal digits

may be treated as decimal for this conversion).

 Step 2 − Combine all the resulting binary groups (of 4 digits each) into a single binary

number.

Example

Hexadecimal Number − 1516

Calculating Binary Equivalent −

Step Hexadecimal Number Binary Number

Step 1 1516 110 510

Step 2 1516 00012 01012

Step 3 1516 000101012

Hexadecimal Number − 1516 = Binary Number − 101012

In the coding, when numbers, letters or words are represented by a specific group of

symbols, it is said that the number, letter or word is being encoded. The group of

symbols is called as a code. The digital data is represented, stored and transmitted as

group of binary bits. This group is also called as binary code. The binary code is

represented by the number as well as alphanumeric letter.

Advantages of Binary Code

Following is the list of advantages that binary code offers.

 Binary codes are suitable for the computer applications.

 Binary codes are suitable for the digital communications.

 Binary codes make the analysis and designing of digital circuits if we use the binary codes.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 15

 Since only 0 & 1 are being used, implementation becomes easy.

Classification of binary codes

The codes are broadly categorized into following four categories.

 Weighted Codes

 Non-Weighted Codes

 Binary Coded Decimal Code

 Alphanumeric Codes

 Error Detecting Codes

 Error Correcting Codes

Weighted Codes

Weighted binary codes are those binary codes which obey the positional weight principle.

Each position of the number represents a specific weight. Several systems of the codes

are used to express the decimal digits 0 through 9. In these codes each decimal digit is

represented by a group of four bits.

Non-Weighted Codes

In this type of binary codes, the positional weights are not assigned. The examples of

non-weighted codes are Excess-3 code and Gray code.

Exce
ss-3

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 16

code

The Excess-3 code is also called as XS-3 code. It is non-weighted code used to

express decimal numbers. The Excess-3 code words are derived from the 8421 BCD

code words adding (0011)2 or (3)10 to each code word in 8421. The excess-3 codes

are obtained as follows −

Example

Gray Code

It is the non-weighted code and it is not arithmetic codes. That means there are no specific

weights assigned to the bit position. It has a very special feature that, only one bit will

change each time the decimal number is incremented as shown in fig. As only one bit

changes at a time, the gray code is called as a unit distance code. The gray code is a cyclic

code. Gray code cannot be used for arithmetic operation.

Application of Gray code

 Gray code is popularly used in the shaft position encoders.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 17

 A shaft position encoder produces a code word which represents the angular

position of the shaft.

Binary Coded Decimal (BCD) code

In this code each decimal digit is represented by a 4-bit binary number. BCD is a way to

express each of the decimal digits with a binary code. In the BCD, with four bits we can

represent sixteen numbers (0000 to 1111). But in BCD code only first ten of these are

used (0000 to 1001). The remaining six code combinations i.e. 1010 to 1111 are invalid

in BCD.

Advantages of BCD
Codes

 It is very similar to decimal system.

 We need to remember binary equivalent of decimal numbers 0 to 9 only.

Disadvantages of
BCD Codes

 The addition and subtraction of BCD have different rules.

 The BCD arithmetic is little more complicated.

 BCD needs more number of bits than binary to represent the decimal number.

So BCD is less efficient than binary.

Alphanumeric codes

A binary digit or bit can represent only two symbols as it has only two states '0' or '1'. But

this is not enough for communication between two computers because there we need many

more symbols for

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 18

communication. These symbols are required to represent 26 alphabets with capital and

small letters, numbers from 0 to 9, punctuation marks and other symbols.

The alphanumeric codes are the codes that represent numbers and alphabetic characters.

Mostly such codes also represent other characters such as symbol and various instructions

necessary for conveying information. An alphanumeric code should at least represent 10

digits and 26 letters of alphabet i.e. total 36 items. The following three alphanumeric

codes are very commonly used for the data representation.

 American Standard Code for Information Interchange (ASCII).

 Extended Binary Coded Decimal Interchange Code (EBCDIC).

 Five bit Baudot Code.

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more

commonly used worldwide while EBCDIC is used primarily in large IBM computers.

Error Codes

There are binary code techniques available to detect and correct data during data transmission.

There are many methods or techniques which can be used to convert code from one

format to another. We'll demonstrate here the following

 Binary to BCD Conversion

 BCD to Binary Conversion

 BCD to Excess-3

 Excess-3 to BCD

Binary to BCD Conversion

Steps

 Step 1 -- Convert the binary number to decimal.

 Step 2 -- Convert decimal number to BCD.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 19

(11101)2= (00101001)BCD

Example − convert (11101)2 to BCD.

Step 1 − Convert to Decimal

Binary Number − 111012

Calculating Decimal Equivalent −

Step Binary Number Decimal Number

Step 1 111012 ((1 × 24) + (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20))10

Step 2 111012 (16 + 8 + 4 + 0 + 1)10

Step 3 111012 2910

Binary Number − 111012 = Decimal Number − 2910

Step 2 − Convert to BCD

Decimal Number − 2910

Calculate BCD Equivalent. Convert each digit into groups of four binary digits equivalent.

Step Decimal Number Conversion

Step 1 2910 00102 10012

Step 2 2910 00101001BCD

Result

BCD to Binary Conversion

Steps

 Step 1 -- Convert the BCD number to decimal.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 20

 Step 2 -- Convert decimal to binary.

Example − convert (00101001)BCD to Binary.

Step 1 - Convert to BCD

BCD Number − (00101001)BCD

Calculate decimal Equivalent. Convert each four digit into a group and get decimal

equivalent for each group.

Step BCD Number Conversion

Step 1 (00101001)BCD 00102 10012

Step 2 (00101001)BCD 210 910

Step 3 (00101001)BCD 2910

BCD Number − (00101001)BCD = Decimal Number − 2910

Step 2 - Convert to Binary

Used long division method for decimal to binary conversion.

Decimal Number − 2910

Calculating Binary Equivalent −

Step Operation Result Remainder

Step 1 29 / 2 14 1

Step 2 14 / 2 7 0

Step 3 7 / 2 3 1

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 21

(00101001)BCD = (11101)2

Step 4 3 / 2 1 1

Step 5 1 / 2 0 1

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse

order so that the first remainder becomes the least significant digit (LSD) and the last

remainder becomes the most significant digit (MSD).

Decimal Number − 2910 = Binary Number − 111012

Result

BCD to Excess-3

Steps

 Step 1 -- Convert BCD to decimal.

 Step 2 -- Add (3)10 to this decimal number.

 Step 3 -- Convert into binary to get excess-3 code.

Example − convert (1001)BCD to Excess-3.

Step 1 − Convert to decimal

(1001)BCD = 910

Step 2 − Add 3 to decimal

(9)10 + (3)10 = (12)10

Step 3 − Convert to Excess-3

(12)10 = (1100)2

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 22

(1001)BCD = (1100)XS-3

Given XS-3 number = 1 0 0 1 1 0 1 0

Subtract (0011)2 = 0 0 1 1 0 0 1 1

BCD = 0 1 1 0 0 1 1 1

(10011010)XS-3 = (01100111)BCD

Result

Excess-3 to BCD Conversion
Steps

 Step 1 -- Subtract (0011)2 from each 4 bit of excess-3 digit to obtain the

corresponding BCD code.

Example − convert (10011010)XS-3 to BCD.

Result

Complements are used in the digital computers in order to simplify the subtraction

operation and for the logical manipulations. For each radix-r system (radix r represents

base of number system) there are two types of complements.

S.N. Complement Description

1 Radix Complement The radix complement is referred to as the r's complement

2 Diminished Radix Complement The diminished radix complement is referred to as the (r-1)'s complement

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 23

Binary system complements

As the binary system has base r = 2. So the two types of complements for the binary

system are 2's complement and 1's complement.

1's complement

The 1's complement of a number is found by changing all 1's to 0's and all 0's to 1's.

This is called as taking complement or 1's complement. Example of 1's Complement is as

follows.

2's complement

The 2's complement of binary number is obtained by adding 1 to the Least Significant Bit

(LSB) of 1's complement of the number.

2's complement = 1's

complement + 1 Example of

2's Complement is as ollows.

Binary arithmetic is essential part of all the digital computers and many other digital system.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 24

Binary Addition
It is a key for binary subtraction, multiplication, division. There are four rules of binary addition.

In fourth case, a binary addition is creating a sum of (1 + 1 = 10) i.e. 0 is written in the

given column and a carry of 1 over to the next column.

Example − Addition

Binary Subtraction

Subtraction and Borrow, these two words will be used very frequently for the binary

subtraction. There are four rules of binary subtraction.

Example − Subtraction

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 25

Binary Multiplication

Binary multiplication is similar to decimal multiplication. It is simpler than decimal

multiplication because only 0s and 1s are involved. There are four rules of binary

multiplication.

Example − Multiplication

Binary Division

Binary division is similar to decimal division. It is called as the long division procedure.

Example − Division

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 26

Hexadecimal Number System
Following are the characteristics of a hexadecimal number system.

 Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

 Letters represents numbers starting from 10. A = 10, B = 11, C = 12, D = 13, E = 14, F =

15.

 Also called base 16 number system.

 Each position in a hexadecimal number represents a 0 power of the base (16). Example −

160

 Last position in a hexadecimal number represents an x power of the base (16). Example −

16x

where x represents the last position - 1.

Example

Hexadecimal Number − 19FDE16

Calculating Decimal Equivalent −

Step Binary Number Decimal Number

Step 1 19FDE16 ((1 × 164) + (9 × 163) + (F × 162) + (D × 161) + (E × 160))10

Step 2 19FDE16 ((1 × 164) + (9 × 163) + (15 × 162) + (13 × 161) + (14 × 160))10

Step 3 19FDE16 (65536 + 36864 + 3840 + 208 + 14)10

Step 4 19FDE16 10646210

Note − 19FDE16 is normally written as 19FDE.

Hexadecimal Addition

Following hexadecimal addition table will help you greatly to handle Hexadecimal addition.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 27

A16 + 516 = F16.

To use this table, simply follow the directions used in this example − Add A16 and 516.

Locate A in the X column then locate the 5 in the Y column. The point in 'sum' area where

these two columns intersect is the sum of two numbers.

Example − Addition

Hexadecimal Subtraction

The subtraction of hexadecimal numbers follow the same rules as the subtraction of

numbers in any other number system. The only variation is in borrowed number. In the

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 28

decimal system, you borrow a group of 1010. In the binary system, you borrow a group of

210. In the hexadecimal system you borrow a group of 1610.

Example - Subtraction

Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It uses only

the binary numbers i.e. 0 and 1. It is also called as Binary Algebra or logical

Algebra. Boolean algebra was invented by George Boole in 1854.

Rule in Boolean Algebra

Following are the important rules used in Boolean algebra.

 Variable used can have only two values. Binary 1 for HIGH and Binary 0 for LOW.

 Complement of a variable is represented by an over bar (-). Thus, complement of

variable B is represented as . Thus if B = 0 then = 1 and B = 1 then = 0.

 ORing of the variables is represented by a plus (+) sign between them. For

example ORing of A, B, C is represented as A + B + C.

 Logical ANDing of the two or more variable is represented by writing a dot

between them such as A.B.C. Sometime the dot may be omitted like ABC.

Boolean Laws

There are six types of Boolean Laws.

Commutative law

Any binary operation which satisfies the following expression is referred to as commutative

operation.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 29

Commutative law states that changing the sequence of the variables does not have any effect on the
output of a logic circuit.

Associative law

This law states that the order in which the logic operations are performed is irrelevant as

their effect is the same.

Distributive law

Distributive law states the following condition.

AND law

These laws use the AND operation. Therefore they are called as AND laws.

OR law

These laws use the OR operation. Therefore they are called as OR laws.

INVERSION law

This law uses the NOT operation. The inversion law states that double inversion of a variable

results in the original variale itself.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 30

LOGIC GATES

Logic gates are the basic building blocks of any digital system. It is an electronic circuit

having one or more than one input and only one output. The relationship between the

input and the output is based on a certain logic. Based on this, logic gates are named as

AND gate, OR gate, NOT gate etc.

AND Gate

A circuit which performs an AND operation is shown in figure. It has n input (n >= 2) and one
output.

Logic diagram

Truth Table

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 31

OR Gate

A circuit which performs an OR operation is shown in figure. It has n input (n >= 2) and one
output.

Logic diagram

Truth Table

NOT Gate

NOT gate is also known as Inverter. It has one input A and one output Y.

Logic diagram

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 32

Truth Table

NAND Gate

A NOT-AND operation is known as NAND operation. It has n input (n >= 2) and one output.

Logic diagram

Truth Table

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 33

NOR Gate

A NOT-OR operation is known as NOR operation. It has n input (n >= 2) and one output.

Logic diagram

Truth Table

XOR Gate

XOR or Ex-OR gate is a special type of gate. It can be used in the half adder, full adder

and subtractor. The exclusive-OR gate is abbreviated as EX-OR gate or sometime as X-

OR gate. It has n input (n >= 2) and one output.

Logic diagram

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 34

Truth Table

XNOR Gate

XNOR gate is a special type of gate. It can be used in the half adder, full adder and

subtractor. The exclusive-NOR gate is abbreviated as EX-NOR gate or sometime as X-

NOR gate. It has n input (n >= 2) and one output.

Logic diagram

Truth Table

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 35

UNIT II
Gate Level

Minimization Introduction to Karnaugh

Maps

The Karnaugh map (or K-map) is a visual way of detecting redundancy

in the SOP.

The K-map can be easily used for circuits with 2, 3, or 4 inputs.

It consists of an array of cells, each representing a possible combination of inputs.

• The cells are arranged to that each cell’s input

combination differs from adjacent cells by only a single

bit.

• This is called Gray code ordering – it ensures that physical

neighbors are the array is logical neighbors as well. (In

other words, neighboring bit patterns are nearly the same,

differing by only 1 bit).

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 36

Note that the numbers are not in binary order, but are arranged so that

only a single bit changes between neighbors.

This one-bit change applies at the edges, too. So cells in the same row

on the left and right edges of the array also only differ by one bit.

Note: The value of a particular cell is found by combining the

numbers at the edges of the row and column.

Also, in general, it is easier to order the inputs to a K-map so that

they can be read like a binary number. (Show example.)

So, we have this grid. What do we do with it?

• We put 1's in all the cells that represent minterms in

the SOP. (In other words, we find the 1's in the truth

table output, and put 1's in the cells corresponding to

the same inputs.)

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 37

Let’s do this in relation to the 2-input multiplexer example:

If there are two neighboring 1's in the grid, it

means that the input bit change between the two

cells has no effect on the output, and thus there is

redundancy. This leads to a basic strategy.

Basic Strategy:

Group adjacent 1's together in square or rectangular

groups of 2, 4, 8, or 16, such that the total number of

groups and isolated 1's is minimized, while using as

large groups as possible. Groups may overlap, so that

a particular cell may be included in more than one

group.

(Recall that adjacency

wrap s around edges

of grid.) Applying this

to the multiplexer

example:

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 38

So, considering the best option above (i), notice the following:

1. B changes but the output doesn’t,

so B is redundant in this group

(See comment 1, below).

2. A changes but the output doesn’t,

so A is redundant in this group

(See comment 2, below).

So, we write out Boolean expressions for each

group, leaving out the redundant elements. That is,

for each group, we write out the inputs that don’t

change.

The multiplexer example, with two groups, gives us two terms,

Y = SB + S’A,which is the same as

what we achieved through using

Boolean algebra to reduce the circuit.

So, we can summarize this process into a basic set of rules:

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 39

Rules for K-Maps

1. Each cell with a 1 must be included in at least one

group.

2. Try to form the largest possible groups.

3. Try to end up with as few groups as possible.

4. Groups may be in sizes that are powers of 2: 2 0 = 1,

21 = 2, 22 = 4, 23

= 8, 24 = 16, ...

5. Groups may be square or rectangular

only (including wrap-around at the

grid edges). No diagonals or zig-zags

can be used to form a group.

6. The larger a group is, the more redundant inputs

there are:

i. A group of 1 has no redundant inputs.

ii. A group of 2 has 1 redundant input.

iii. A group of 4 has 2 redundant inputs.

iv. A group of 8 has 3 redundant inputs.

v. A group of 16 has 4 redundant inputs

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 40

The following simple examples illustrate rule 6 above.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 41

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

A B C Y

0 0 0 0
0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Examples

2- input Example:

Direct from truth table: Y = A’B’ + A’B + AB’

3- input Example:

Direct from truth table: Y = A’BC’ + A’BC + AB’C’ + ABC’ + ABC

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 42

ABCD Y

0000 1

0001 0

0010 1

0011 0

0100 0

0101 1

0110 0

0111 1

1000 1

1001 0

1010 1

1011 0

1100 0

1101 1

1110 1

1111 1

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 43

ABCD Y

0000 1

0001 0

0010 1

0011 0

0100 1

0101 1

0110 1

0111 1

1000 1

1001 0

1010 1

1011 0

1100 1

1101 1

1110 1

1111 1

use a K-map to reduce the following 4-input circuit.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 44

Combinational circuit is a circuit in which we combine the different gates in the circuit, for example

encoder, decoder, multiplexer and demultiplexer. Some of the characteristics of combinational circuits

are following −

 The output of combinational circuit at any instant of time, depends only on the levels present at

input terminals.

 The combinational circuit do not use any memory. The previous state of input does not have any

effect on the present state of the circuit.

 A combinational circuit can have an n number of inputs and m number of outputs.

Block diagram

We're going to

elaborate few

important

combinational circuits

as follows. Half Adder

Half adder is a combinational logic circuit with two inputs and two outputs. The half adder circuit is

designed to add two single bit binary number A and

B. It is the basic building block for addition of two single bit numbers. This circuit has two outputs

carry and sum.

Block diagram

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 45

Truth Table

Circuit Diagram

Full Adder

Full adder is developed to overcome the drawback of Half Adder circuit. It can add two one-bit

numbers A and B, and carry c. The full adder is a three input and two output combinational circuit.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 46

Block diagram

Truth Table

Circuit Diagram

Half-Subtractors

Half-subtractor is a combination circuit with two inputs and two outputs (difference and borrow). It

produces the difference between the two binary bits at the input and also produces an output (Borrow)

to indicate if a 1 has been borrowed. In the subtraction (A-B), A is called as Minuend bit and B is

called as Subtrahend bit.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 47

Truth Table

Circuit Diagram

Full-Subtractors

The disadvantage of a half subtractor is overcome by full subtractor. The full subtractor is a combinational

circuit with three inputs A,B,C and two output D and C'. A is the 'minuend', B is 'subtrahend', C is the

'borrow' produced by the previous stage, D is the difference output and C' is the borrow output.

Truth Table:

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 48

Circuit Diagram

N-Bit Parallel Adder

The Full Adder is capable of adding only two single digit binary number along with a carry input. But

in practical we need to add binary numbers which are much longer than just one bit. To add two n-bit

binary numbers we need to use the n-bit parallel adder. It uses a number of full adders in cascade.

The carry output of the previous full adder is connected to carry input of the next full adder.

4- Bit Parallel Adder

In the block diagram, A0 and B0 represent the LSB of the four bit words A and B. Hence Full Adder-0

is the lowest stage. Hence its Cin has been permanently made 0. The rest of the connections are exactly

same as those of n-bit parallel adder is shown in fig. The four bit parallel adder is a very common

logic circuit.

Block diagram

N-Bit Parallel Subtractor

The subtraction can be carried out by taking the 1's or 2's complement of the number to be subtracted.

For example we can perform the subtraction (A- B) by adding either 1's or 2's complement of B to A.

That means we can use a binary adder to perform the binary subtraction.

4 Bit Parallel Subtractor

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 49

The number to be subtracted (B) is first passed through inverters to obtain its 1's complement. The 4-

bit adder then adds A and 2's complement of B to produce the subtraction. S3 S2 S1 S0 represents the

result of binary subtraction (A-B) and carry output Cout represents the polarity of the result. If A > B

then Cout = 0 and the result of binary form (A-B) then Cout = 1 and the result is in the 2's complement

form.

Block diagram

Carry Look Ahead Adder

In ripple carry adders, the carry propagation time is the major speed limiting factor.

Most other arithmetic operations, e.g. multiplication and division are implemented using several

add/subtract steps. Thus, improving the speed of addition will improve the speed of all other arithmetic

operations.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 50

Accordingly, reducing the carry propagation delay of adders is of great importance. Different logic

design approaches have been employed to overcome the carry propagation problem.

One widely used approach employs the principle of carrylook-aheadsolves this problem by

calculating the carry signals in advance, based on the input signals.

This type of adder circuit is called as carry look-ahead adder (CLAadder). It is based on the fact that a

carry signal will be generated in two cases:

(1) when both bits Ai and Bi are 1, or

(2) when one of the two bits is 1 and the carry-in (carry of the previous stage) is 1.

To understand the carry propagation problem, let’s consider the case of adding two n-bit numbers A and

B.

The Figure shows the full adder circuit used to add the operand bits in the ithcolumn; namely Ai &

Bi and the carry bit coming from the previous column (Ci).

In this circuit, the 2 internal signals Pi and Giare given by:

The output sum and carry can be defined as :

http://implement-logic.blogspot.com/2011/08/half-adder-circuit.html
http://implement-logic.blogspot.com/
http://implement-logic.blogspot.com/
http://implement-logic.blogspot.com/2011/08/half-adder-circuit.html
http://implement-logic.blogspot.com/2011/08/full-adder-circuit_16.html

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 51

Giis known as the carry Generatesignal since a carry (Ci+1) is generated whenever Gi=1, regardless of

the input carry (Ci).

Pi is known as the carry propagatesignal since whenever Pi =1, the input carry is propagated to the

output carry, i.e., Ci+1. = Ci(note that whenever Pi

=1, Gi=0).

Computing the values of Pi and Gionly depend on the input operand

bits (Ai & Bi) as clear from the Figure and equations. Thus, these

signals settle to their steady-state valueafter the propagation through

their respective gates.

Computed values of allthe Pi’s are valid one XOR-

gate delay after the operands A and B are made valid.

Computed values of allthe Gi’s are valid one AND-

gate delay after the operands A and B are made valid.

The Boolean expression of the carry outputs of

various stages can be written as follows:

C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1 (G0 + P0C0)

= G1 + P1G0 + P1P0C0

= G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

In general, the ithcarry output is expressed in the form Ci= Fi (P’s, G’s ,C0).

In other words, each carry signal is expressed as a direct SOP function of C0 rather than its preceding

carry signal.

Since the Boolean expression for each output carry is expressed in SOP

form, it can be implemented in two-level circuits. The 2-level

implementation of the carry signals has a propagation delay of 2 gates,

i.e., 2τ.

The 4-bit carry look-ahead (CLA) adder consists of 3 levels of logic:

http://implement-logic.blogspot.com/2011/07/universal-gate-nor.html
http://implement-logic.blogspot.com/2011/07/universal-gate-nor.html
http://implement-logic.blogspot.com/2011/07/universal-gate-nor.html
http://implement-logic.blogspot.com/2011/07/universal-gate-nor.html

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 52

First level: Generates all the P & G signals. Four sets of P & G logic (each consists of an XOR

gate and an AND gate). Output signals of this level (P’s & G’s) will be valid after 1τ.

Second level: The Carry Look-Ahead (CLA) logic block which consists of four 2-level

implementation logic circuits. It generates the carry signals (C1, C2, C3, and C4) as defined by the

above expressions. Output signals of this level (C1, C2, C3, and C4) will be valid after 3τ.

Third level: Four XOR gates which generate the sum signals (Si) (Si = Pi ⊕Ci). Output signals of this

level (S0, S1, S2, and S3) will be valid after 4τ.

Thus, the 4 Sum signals (S0, S1, S2 & S3) will all be valid after a total delay of 4τ

compared to a delay of (2n+1) τ for Ripple Carry adders. For a 4-bit adder (n = 4), the

Ripple Carry adder delay is 9τ.

The disadvantage of the CLA adders is that the carry expressions (and hence

logic) become quite complex for more than 4 bits. Thus, CLA adders are

usually implemented as 4-bit modules that are used to build larger size

adders.

BCD Adder

If two BCD digits are

added then their sum result

will not always be in

BCD. Consider the two

given examples.

In the first example, result is in BCD while in the second example it is not in BCD.

Four bits are needed to represent all BCD digits (0 – 9). But with four bits we can represent up to

16 values (0000 through 1111). The extra six values (1010 through 1111) are not valid BCD digits.

Whenever the sum result is > 9, it will not be in BCD and will require correction to get a valid BCD

result.

http://implement-logic.blogspot.com/2011_07_01_archive.html

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 53

Correction is done through the addition of 6 to the result to skip the six invalid

values as shown in the truth table by yellow color. Consider the given examples

of non-BCD sum result and its correction.

A BCD adder is a circuit that adds two BCD digits in parallel and produces a sum BCD digit and a

carry out bit.

The maximum sum result of a BCD input adder can be 19. As maximum number in BCD is 9 and

http://implement-logic.blogspot.com/2011/08/full-adder-circuit_16.html

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 54

may be there will be a carry from previous stage also, so 9 + 9 + 1 = 19

The following truth table shows all the possible sum results when two BCD digits are added.

The logic circuit that checks the necessary BCD correction can be derived by detecting the

condition where the resulting binary sum is 01010 through 10011 (decimal 10 through 19).

It can be done by considering the shown truth table, in which the function F is true when the digit

is not a valid BCD digit. It can be simplified using a 5-variable K-map.

But detecting values 1010 through 1111 (decimal 10 through 15) can also be done by using a 4-variable

K-map as shown in the figure.

Values greater than 1111, i.e., from 10000 through 10011 (decimal 16 through 19) can be

detected by the carry out (CO) which equals 1 only for these output values. So, F = CO = 1 for

these values. Hence, F is true when CO is true OR when (Z3 Z2 + Z3 Z1) is true.

Thus, the correction step (adding

0110) is performed if the following

function equals 1: F = CO + Z3 Z2 +

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 55

Z3 Z1

The circuit of the BCD adder will be as shown in the figure.

The two BCD digits, together with the input carry, are first added in the top 4-bit binary adder to

produce the binary sum. The bottom 4-bit binary adder is used to add the correction factor to the

binary result of the top binary adder.

Note:

1. When the Output carry is equal to zero, the correction factor equals zero.

2. When the Output carry is equal to one, the correction factor is 0110.

The output carry generated from the bottom binary adder is ignored, since it supplies information

already available at the output-carry terminal.

A decimal parallel adder that adds n decimal digits needs n BCD adder stages. The output carry

from one stage must be connected to the input carry of the next higher-order stage.

Binary Multiplier

Multiplication of binary numbers is performed in the same way as with decimal numbers. The

multiplicand is multiplied by each bit of the multiplier, starting from the least significant bit.

The result of each such multiplication forms a partial product.

Successive partial products are shifted one bit to the left. The product

is obtained by adding these shifted partial products.

Consider an example of multiplication of two numbers, say A and B (2 bits each), C = Ax B.

The first partial product is formed by multiplying the B1B0 by A0. The multiplication of two bits such

as A0 and B0 produces a 1 if both bits are 1; otherwise it produces a 0 like an AND operation. So the

partial products can be implemented with AND gates.

The second partial product is formed by multiplying the B1B0 by A1 and is shifted one position to the

left.

http://implement-logic.blogspot.com/2011/08/full-adder-circuit_16.html
http://implement-logic.blogspot.com/2011/11/binary-parallel-addersubtractor.html
http://www.google.com/url?sa=t&rct=j&q&esrc=s&source=web&cd=3&ved=0CDEQFjAC&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRestricted_partial_quotients&ei=lj7dTtHmA87Osga35KnGCw&usg=AFQjCNEMIeRDNuahTuFVQqAC0awrtAVt2A&sig2=oPhWla-rC7Imc5zrg4Tttw

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 56

The two partial products are added with two half adders (HA). Usually there are more bits in the

partial products, and then it will be necessary to use Full Adders.

The least significant bit of the product does not have to go through an adder, since it is formed by

the output of the first AND gate as shown in the Figure. A binary multiplier with more bits can be

constructed in a similar manner. Consider another example of multiplying two numbers, say A (3-

bit number) and B (4-bit number).

Each bit of A (the multiplier) is ANDed with each bit of B (the multicand) as shown in the Figure.

http://implement-logic.blogspot.com/2011/08/full-adder-circuit_16.html
http://implement-logic.blogspot.com/2011/08/full-adder-circuit_16.html
http://implement-logic.blogspot.com/2011/11/bcd-adder.html
http://implement-logic.blogspot.com/2011/07/normal-0-false-false-false-en-us-x-none.html

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 57

The binary output in each level of AND gates is added in parallel with the partial product of the

previous level to form a new partial product. The last level produces the final product.

Since J = 3 and K = 4, 12 (J x K) AND gates and two 4-bit ((J - 1) K-bit) adders are needed to

produce a product of seven (J + K) bits. Its circuit is shown in the Figure.

Note that 0 is applied at the most significant bit of augend of first 4-bit adder because the least

significant bit of the product does not have to go through an adder.

Digital Comparator

Another common and very useful combinational logic circuit is that of the Digital Comparator

circuit. Digital or Binary Comparators are made up from standard AND, NOR and NOT gates that

compare the digital signals present at their input terminals and produce an output depending upon

the condition of those inputs.

For example, along with being able to add and subtract binary numbers we need to be able to

compare them and determine whether the value of input A is greater than, smaller than or equal to

the value at input B etc. The digital comparator accomplishes this using several logic gates that

operate on the principles of Boolean Algebra. There are two main types of Digital Comparator

available and these are.

 1. Identity Comparator – an Identity Comparator is a digital comparator that has only one

output terminal for when A = B either “HIGH” A

= B = 1 or “LOW” A = B = 0

 2. Magnitude Comparator – a Magnitude Comparator is a digital comparator which has

three output terminals, one each for equality, A = B greater than, A > B and less than A

< B

The purpose of a Digital Comparator is to compare a set of variables or unknown numbers, for

example A (A1, A2, A3, …. An, etc) against that of a constant or unknown value such as B (B1,

B2, B3, ….Bn, etc) and produce an output condition or flag depending upon the result of the

comparison.

For example, a magnitude comparator of two 1-bits, (A and B) inputs would produce the

following three output conditions when compared to each other.

http://implement-logic.blogspot.com/2011/11/bcd-adder.html
http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 58

Which means: A is greater than B, A is equal to B, and A is less than B

This is useful if we want to compare two variables and want to produce an output when any of the

above three conditions are achieved. For example, produce an output from a counter when a certain

count number is reached. Consider the simple 1-bit comparator below.

1-bit Digital Comparator Circuit

Then the operation of a 1-bit digital

comparator is given in the

following Truth Table. Digital

Comparator Truth Table

Inputs Outputs

B A A > B A = B A < B

0 0 0 1 0

0 1 1 0 0

1 0 0 0 1

1 1 0 1 0

You may notice two distinct features about the comparator from the above truth table. Firstly, the

circuit does not distinguish between either two “0” or two “1”‘s as an output A = B is produced

when they are both equal, either A = B = “0” or A = B = “1”. Secondly, the output condition for A

= B resembles that of a commonly available logic gate, the Exclusive-NOR or Ex-NOR function

(equivalence) on each of the n-bits giving: Q = A ⊕ B

http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 59

Digital comparators actually use Exclusive-NOR gates within their design for comparing their

respective pairs of bits. When we are comparing two binary or BCD values or variables against

each other, we are comparing the “magnitude” of these values, a logic “0” against a logic “1”

which is where the term Magnitude Comparator comes from.

As well as comparing individual bits, we can design larger bit comparators by cascading together

n of these and produce a n-bit comparator just as we did for the n-bit adder in the previous tutorial.

Multi-bit comparators can be constructed to compare whole binary or BCD words to produce an

output if one word is larger, equal to or less than the other.

A very good example of this is the 4-bit Magnitude Comparator. Here, two 4-bit words (“nibbles”)

are compared to each other to produce the relevant output with one word connected to inputs A

and the other to be compared against connected to input B as shown below.

4-bit Magnitude Comparator

Decoder

A decoder is a combinational circuit. It has n input and to a maximum m = 2n outputs. Decoder is

identical to a demultiplexer without any data input. It performs operations which are exactly opposite to

those of an encoder.

Block diagram

Examples of Decoders are following.

 Code converters

 BCD to seven segment decoders

 Nixie tube decoders

 Relay actuator

2 to 4 Line Decoder

http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html
http://www.electronics-tutorials.ws/combination/comb_8.html

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 60

The block diagram of 2 to 4 line decoder is shown in the fig. A and B are the two inputs where D

through D are the four outputs. Truth table explains the operations of a decoder. It shows that each

output is 1 for only a specific combination of inputs.

Block diagram

Truth Table

Logic Circuit

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 61

in this topic we will try to discuss about Combinational Logic Implementation

full adder circuit with a decoder and two OR Gates. To do this at first we need to

review the truth table of Full Adder circuit.

Truth table of Full Adder Circuit

INPUT OUTPUT

abc S C

000 0 0

001 1 0

010 1 0

011 0 1

100 1 0

101 0 1

110 0 1

111 1 1

From the truth table we

have been found that

S(a,b,c)=sum(1,2,4,7).,

C(a,b,c)=sum(3,5,6,7)

As there are three inputs and eight min-terms, so have to use 3 to 8 line decorder. The generates the

eight min-terms for a, b, c.

The OR Gate for output S forms the sum of min-terms 1, 2, 4 and 7. The OR Gate output C forms the

sum of min-terms 3, 5, 6 and 7.

Circuit Diagram

http://implement-logic.blogspot.com/2011/08/decorder.html
http://implement-logic.blogspot.com/2011/08/full-adder-circuit_16.html
http://en.wikipedia.org/wiki/Decoder

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 62

A function with a long list of min-terms requires an OR Gate with a large number of inputs. A

function F having a list of K min-terms can be expressed in its complemented form F’ with 2^n-K

min-terms. If the number of min-terms in a function is greater than 2^n/2, then F’ can be expressed

with fewer min-terms than required for F. In such a case, it is suitable to use a NOR Gate to sum

the min-terms of F’. The output of the NOR Gate will generate the normal output F.

The decoder method can be used to implement any combinational circuit. It is necessary to

implementing with comparing to all other possible implementations to determine the solution.

Encoder

Encoder is a combinational circuit which is designed to perform the inverse operation of the decoder.

An encoder has n number of input lines and m number of output lines. An encoder produces an m bit

binary code corresponding to the digital input number. The encoder accepts an n input digital word

and converts it into an m bit another digital word.

Block diagram

Examples of Encoders are following.

 Priority encoders

 Decimal to BCD encoder

 Octal to binary encoder

This is a special type of encoder. Priority is given to the input lines. If two or more input line are 1
at the same time, then the input line with highest

priority will be considered. There are four input D0, D1, D2, D3 and two output Y0, Y1. Out of the four

input D3 has the highest priority and D0 has the lowest priority. That means if D3 = 1 then Y1Y1 = 11

irrespective of the other inputs. Similarly if D3 = 0 and D2 = 1 then Y1 Y0 = 10 irrespective of the other

inputs.

Block diagram

http://implement-logic.blogspot.com/2011/07/universal-gate-nor.html
http://implement-logic.blogspot.com/2011/07/universal-gate-nor.html
http://implement-logic.blogspot.com/2011/08/decorder.html

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 63

Truth Table

Logic Circuit

Multiplexers

Multiplexer is a special type of combinational circuit. There are n-data inputs, one output and m select

inputs with 2m = n. It is a digital circuit which selects one of the n data inputs and routes it to the

output. The selection of one of the n inputs is done by the selected inputs. Depending on the digital

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 64

code applied at the selected inputs, one out of n data sources is selected and transmitted to the single

output Y. E is called the strobe or enable input which is useful for the cascading. It is generally an

active low terminal that means it will perform the required operation when it is low.

Block diagram

Multiplexers come in multiple variations

 2 : 1 multiplexer

 4 : 1 multiplexer

 16 : 1 multiplexer

Truth Table

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 65

Demultiplexers

A demultiplexer performs the reverse operation of a multiplexer i.e. it receives one input and

distributes it over several outputs. It has only one input, n outputs, m select input. At a time only one

output line is selected by the select lines and the input is transmitted to the selected output line. A de-

multiplexer is equivalent to a single pole multiple way switch as shown in fig.

Demultiplexers come in multiple variations.

 1 : 2 demultiplexer

 1 : 4 demultiplexer

Truth Table

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 66

UNIT IV
SEQUENTIAL LOGIC CIRCUITS:

The combinational circuit does not use any memory. Hence the previous state of input does not have

any effect on the present state of the circuit. But sequential circuit has memory so output can vary

based on input. This type of circuits uses previous input, output, clock and a memory element.

Block diagram

Flip Flop

Flip flop is a sequential circuit which generally samples its inputs and changes its outputs only at

particular instants of time and not continuously. Flip flop is said to be edge sensitive or edge

triggered rather than being level triggered like latches.

SR Latch

The bistable element is able to remember or store one bit of information. However, because it

does not have any inputs, we cannot change the information bit that is stored in it. In order to

change the information bit, we need to add inputs to the circuit. The simplest way to add inputs is

to replace the two inverters with two NAND gates. This circuit is called a SR latch. In addition to

the two outputs Q and Q', there are two inputs S' and R' for set and reset respectively. Following

the convention, the prime in S and R denotes that these inputs are active low. The SR latch can

be in one of two states: a set state when Q = 1, or a reset state when Q = 0.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 67

To make the SR latch go to the set state, we simply assert the S' input by setting it to 0.

Remember that 0 NAND anything gives a 1, hence Q = 1 and the latch is set. If R' is not asserted

(R' = 1), then the output of the bottom NAND gate will give a 0, and so Q' = 0. This situation is

shown in Figure 4 (d) at time t0. If we de-assert S' so that S' = R' = 1, the latch will remain at the

set state because Q', the second input to the top NAND gate, is 0 which will keep Q = 1 as

shown at time t1. At time t2 we reset the latch by making R' = 0. Now, Q' goes to 1 and this will

force Q to go to a 0. If we de-assert R' so that again we have S' = R' = 1, this time the latch will

remain at the reset state as shown at time t3. Notice the two times (at t1 and t3) when both S' and

R' are de-asserted. At t1, Q is at a 1, whereas, at t3, Q is ata 0. When both inputs are de-asserted,

the SR latch maintains its previous state. Previous to t1, Q has the value 1, so at t1, Q remains at

a 1. Similarly, previous to t3, Q has the value 0, so at t3, Q remains at a 0.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 68

If both S' and R' are asserted, then both Q and Q' are equal to 1 as shown at time t4. If one of the

input signals is de-asserted earlier than the other, the latch will end up in the state forced by the

signal that was de-asserted later as shown at time t5. At t5, R' is de-asserted first, so the latch

goes into the normal set state with Q = 1 and Q' = 0.

A problem exists if both S' and R' are de-asserted at exactly the same time as shown at time

t6. If both gates have exactly the same delay then they will both output a 0 at exactly the same

time. Feeding the zeros back to the gate input will produce a 1, again at exactly the same time,

which again will produce a 0, and so on and on. This oscillating behavior, called the critical race,

will continue forever. If the two gates do not have exactly the same delay then the situation is

similar to de-asserting one input before the other, and so the latch will go into one state or the

other. However, since we do not know which the faster gate is, therefore, we do not know which

state the latch will go into. Thus, the latch’s next state is undefined.

S-R Flip Flop

It is basically S-R latch using NAND gates with an additional enable input. It is also called as level

triggered SR-FF. For this, circuit in output will take place if and only if the enable input (E) is made

active. In short this circuit will operate as an S-R latch if E = 1 but there is no change in the output if

E = 0.

Block Diagram

Circuit Diagram

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 69

Truth Table

Operation

S.N. Condition Operation

1

S = R = 0 : No change

If S = R = 0 then output of NAND gates 3 and 4 are forced to

become 1.

Hence R' and S' both will be equal to 1. Since S' and R' are the

input of the basic S-R latch using NAND gates, there will be no

change in the state of outputs.

2

S = 0, R = 1, E = 1

Since S = 0, output of NAND-3 i.e. R' = 1 and E = 1 the output

of NAND-4 i.e. S' = 0.

Hence Qn+1 = 0 and Qn+1 bar = 1. This is reset condition.

3

S = 1, R = 0, E = 1

Output of NAND-3 i.e. R' = 0 and output of NAND-4 i.e. S' =

1.

Hence output of S-R NAND latch is Qn+1 = 1 and Qn+1 bar = 0.

This is the reset condition.

4

S = 1, R = 1, E = 1

As S = 1, R = 1 and E = 1, the output of NAND gates 3 and 4

both are 0 i.e. S' = R' = 0.

Hence the Race condition will occur in the basic NAND latch.

Master Slave JK Flip Flop

Master slave JK FF is a cascade of two S-R FF with feedback from the output of second to input of

first. Master is a positive level triggered. But due to the presence of the inverter in the clock line, the

slave will respond to the negative level. Hence when the clock = 1 (positive level) the master is

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 70

active and the slave is inactive. Whereas when clock = 0 (low level) the slave is active and master is

inactive.

Circuit Diagram

Truth Table

Operation

S.N. Condition Operation

1

J = K = 0 (No change)

When clock = 0, the slave becomes active and master is

inactive. But since the S and R inputs have not changed, the

slave outputs will also remain unchanged. Therefore outputs

will not change if J = K =0.

2 J = 0 and K = 1 (Reset)
Clock = 1 − Master active, slave inactive. Therefore outputs of

the master become Q1 = 0 and Q1 bar = 1. That means S = 0 and

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 71

 R =1.

Clock = 0 − Slave active, master inactive. Therefore outputs of

the slave become Q = 0 and Q bar = 1.

Again clock = 1 − Master active, slave inactive. Therefore even

with the changed outputs Q = 0 and Q bar = 1 fed back to

master, its output will be Q1 = 0 and Q1 bar = 1. That means S

= 0 and R = 1.

Hence with clock = 0 and slave becoming active the outputs of

slave will remain Q = 0 and Q bar = 1. Thus we get a stable

output from the Master slave.

3

J = 1 and K = 0 (Set)

Clock = 1 − Master active, slave inactive. Therefore outputs of

the master become Q1 = 1 and Q1 bar = 0. That means S = 1 and

R =0.

Clock = 0 − Slave active, master inactive. Therefore outputs of

the slave become Q = 1 and Q bar = 0.

Again clock = 1 − then it can be shown that the outputs of the

slave are stabilized to Q = 1 and Q bar = 0.

4

J = K = 1 (Toggle)

Clock = 1 − Master active, slave inactive. Outputs of master

will toggle. So S and R also will be inverted.

Clock = 0 − Slave active, master inactive. Outputs of slave will

toggle.

These changed outputs are returned back to the master inputs.

But since clock = 0, the master is still inactive. So it does not

respond to these changed outputs. This avoids the multiple

toggling which leads to the race around condition. The master

slave flip flop will avoid the race around condition.

Delay Flip Flop / D Flip Flop

Delay Flip Flop or D Flip Flop is the simple gated S-R latch with a NAND inverter connected

between S and R inputs. It has only one input. The input data is appearing at the output after some

time. Due to this data delay between i/p and o/p, it is called delay flip flop. S and R will be the

complements of each other due to NAND inverter. Hence S = R = 0 or S = R = 1, these input

condition will never appear. This problem is avoid by SR = 00 and SR = 1 conditions.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 72

Block Diagram

Circuit Diagram

Truth Table

Operation

S.N. Condition Operation

1 E = 0 Latch is disabled. Hence no change in output.

2

E = 1 and D = 0

If E = 1 and D = 0 then S = 0 and R = 1. Hence irrespective of the

present state, the next state is Qn+1 = 0 and Qn+1 bar = 1. This is the

reset condition.

3 E = 1 and D = 1 If E = 1 and D = 1, then S = 1 and R = 0. This will set the latch and

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 73

 Qn+1 = 1 and Qn+1 bar = 0 irrespective of the present state.

Toggle Flip Flop / T Flip Flop

Toggle flip flop is basically a JK flip flop with J and K terminals permanently connected together. It

has only input denoted by T as shown in the Symbol Diagram. The symbol for positive edge

triggered T flip flop is shown in the Block Diagram.

Symbol Diagram

Block Diagram

Truth Table

Operation

S.N. Condition Operation

1 T = 0, J = K = 0 The output Q and Q bar won't change

2 T = 1, J = K = 1 Output will toggle corresponding to every leading edge of clock signal.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 74

REGISTER

Flip-flop is a 1 bit memory cell which can be used for storing the digital data. To increase the storage

capacity in terms of number of bits, we have to use a group of flip-flop. Such a group of flip-flop is

known as a Register. The n-bit register will consist of n number of flip-flop and it is capable of

storing an n-bit word.

The binary data in a register can be moved within the register from one flip-flop to another. The

registers that allow such data transfers are called as shift registers. There are four modes of

operations of a shift register.

 Serial Input Serial Output

 Serial Input Parallel Output

 Parallel Input Serial Output

Parallel Input Parallel Output

Serial Input Serial Output

Let all the flip-flop be initially in the reset condition i.e. Q3 = Q2 = Q1 = Q0 = 0. If an entry of a four

bit binary number 1 1 1 1 is made into the register, this number should be applied to Din bit with the

LSB bit applied first. The D input of FF-3 i.e. D3 is connected to serial data input Din. Output of FF-

3 i.e. Q3 is connected to the input of the next flip-flop i.e. D2 and so on.

Block Diagram

Operation

Before application of clock signal, let Q3 Q2 Q1 Q0 = 0000 and apply LSB bit of the number to be

entered to Din. So Din = D3 = 1. Apply the clock. On the first falling edge of clock, the FF-3 is set,

and stored word in the register is Q3 Q2 Q1 Q0 = 1000.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 75

Apply the next bit to Din. So Din = 1. As soon as the next negative edge of the clock hits, FF-2 will

set and the stored word change to Q3 Q2 Q1 Q0 = 1100.

Apply the next bit to be stored i.e. 1 to Din. Apply the clock pulse. As soon as the third negative clock

edge hits, FF-1 will be set and output will be modified to Q3 Q2 Q1 Q0 = 1110.

Similarly with Din = 1 and with the fourth negative clock edge arriving, the stored word in the

register is Q3 Q2 Q1 Q0 = 1111.

Truth Table

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 76

Waveforms

Bidirectional Shift Register

 If a binary number is shifted left by one position then it is equivalent to multiplying the original

number by 2. Similarly if a binary number is shifted right by one position then it is equivalent to

dividing the original number by 2.

 Hence if we want to use the shift register to multiply and divide the given binary number, then we

should be able to move the data in either left or right direction.

 Such a register is called bi-directional register. A four bit bi-directional shift register is shown in

fig.

 There are two serial inputs namely the serial right shift data input DR, and the serial left shift data

input DL along with a mode select input (M).

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 77

Block Diagram

Operation

S.N. Condition Operation

1

With M = 1 − Shift right operation

If M = 1, then the AND gates 1, 3, 5 and 7 are

enabled whereas the remaining AND gates 2, 4, 6

and 8 will be disabled.

The data at DR is shifted to right bit by bit from

FF-3 to FF-0 on the application of clock pulses.

Thus with M = 1 we get the serial right shift

operation.

2

With M = 0 − Shift left operation

When the mode control M is connected to 0 then

the AND gates 2, 4, 6 and 8 are enabled while 1,

3, 5 and 7 are disabled.

The data at DL is shifted left bit by bit from FF-0

to FF-3 on the application of clock pulses. Thus

with M = 0 we get the serial right shift operation.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 78

Universal Shift Register

A shift register which can shift the data in only one direction is called a uni-directional shift register.

A shift register which can shift the data in both directions is called a bi-directional shift register.

Applying the same logic, a shift register which can shift data in both directions as well as load it

parallely, is known as a universal shift register. The shift register is capable of performing the

following operation −

 Parallel loading

 Lift shifting

 Right shifting

The mode control input is connected to logic 1 for parallel loading operation whereas it is connected

to 0 for serial shifting. With mode control pin connected to ground, the universal shift register acts as

a bi-directional register. For serial left operation, the input is applied to the serial input which goes to

AND gate-1 shown in figure. Whereas for the shift right operation, the serial input is applied to D

input.

Block Diagram

Counter is a sequential circuit. A digital circuit which is used for counting pulses is known counter.

Counter is the widest application of flip-flops. It is a group of flip-flops with a clock signal applied.

Counters are of two types.

Asynchronous or ripple counters.

Synchronous counters.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 79

Asynchronous or ripple counters

The logic diagram of a 2-bit ripple up counter is shown in figure. The toggle (T) flip-flop are being

used. But we can use the JK flip-flop also with J and K connected permanently to logic 1. External

clock is applied to the clock input of flip-flop A and QA output is applied to the clock input of the

next flip-flop i.e. FF-B.

Logical Diagram

Operation

S.N. Condition Operation

1 Initially let both the FFs be in the reset state QBQA = 00 initially

2

After 1st negative clock edge

As soon as the first negative clock edge is

applied, FF-A will toggle and QA will be

equal to 1.

QA is connected to clock input of FF-B.

Since QA has changed from 0 to 1, it is

treated as the positive clock edge by FF-B.

There is no change in QB because FF-B is

a negative edge triggered FF.

QBQA = 01 after the first clock pulse.

3

After 2nd negative clock edge

On the arrival of second negative clock

edge, FF-A toggles again and QA = 0.

The change in QA acts as a negative clock

edge for FF-B. So it will also toggle, and

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 80

 QB will be 1.

QBQA = 10 after the second clock pulse.

4

After 3rd negative clock edge

On the arrival of 3rd negative clock edge,

FF-A toggles again and QA become 1

from 0.

Since this is a positive going change, FF-

B does not respond to it and remains

inactive. So QB does not change and

continues to be equal to 1.

QBQA = 11 after the third clock pulse.

5

After 4th negative clock edge

On the arrival of 4th negative clock edge,

FF-A toggles again and QA becomes 1

from 0.

This negative change in QA acts as clock

pulse for FF-B. Hence it toggles to change

QB from 1 to 0.

QBQA = 00 after the fourth clock pulse.

Truth Table

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 81

Synchronous counters

If the "clock" pulses are applied to all the flip-flops in a counter simultaneously, then such a counter

is called as synchronous counter.

2- bit Synchronous up counter

The JA and KA inputs of FF-A are tied to logic 1. So FF-A will work as a toggle flip-flop. The JB and

KB inputs are connected to QA.

Logical Diagram

Operation

S.N. Condition Operation

1 Initially let both the FFs be in the reset state QBQA = 00 initially.

2

After 1st negative clock edge

As soon as the first negative clock edge is

applied, FF-A will toggle and QA will

change from 0 to 1.

But at the instant of application of

negative clock edge, QA , JB = KB = 0.

Hence FF-B will not change its state. So

QB will remain 0.

QBQA = 01 after the first clock pulse.

3

After 2nd negative clock edge

On the arrival of second negative clock

edge, FF-A toggles again and QA changes

from 1 to 0.

But at this instant QA was 1. So JB = KB=

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 82

 1 and FF-B will toggle. Hence QB changes

from 0 to 1.

QBQA = 10 after the second clock pulse.

4

After 3rd negative clock edge

On application of the third falling clock

edge, FF-A will toggle from 0 to 1 but

there is no change of state for FF-B.

QBQA = 11 after the third clock pulse.

5

After 4th negative clock edge

On application of the next clock pulse, QA

will change from 1 to 0 as QB will also

change from 1 to 0.

QBQA = 00 after the fourth clock pulse.

Classification of counters

Depending on the way in which the counting progresses, the synchronous or asynchronous counters

are classified as follows −

 Up counters

 Down counters

 Up/Down counters

UP/DOWN Counter

Up counter and down counter is combined together to obtain an UP/DOWN counter. A mode

control (M) input is also provided to select either up or down mode. A combinational circuit is

required to be designed and used between each pair of flip-flop in order to achieve the up/down

operation.

 Type of up/down counters

 UP/DOWN ripple counters

 UP/DOWN synchronous counter

UP/DOWN Ripple Counters

In the UP/DOWN ripple counter all the FFs operate in the toggle mode. So either T flip-flops or JK

flip-flops are to be used. The LSB flip-flop receives clock directly. But the clock to every other FF

is obtained from (Q = Q bar) output of the previous FF.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 83

 UP counting mode (M=0) − The Q output of the preceding FF is connected to the clock of

the next stage if up counting is to be achieved. For this mode, the mode select input M is at logic 0

(M=0).

 DOWN counting mode (M=1) − If M = 1, then the Q bar output of the preceding FF is

connected to the next FF. This will operate the counter in the counting mode.

Example

3- bit binary up/down ripple counter.

 3-bit − hence three FFs are required.

 UP/DOWN − So a mode control input is essential.

 For a ripple up counter, the Q output of preceding FF is connected to the clock input of the next

one.

 For a ripple up counter, the Q output of preceding FF is connected to the clock input of the next

one.

 For a ripple down counter, the Q bar output of preceding FF is connected to the clock input of the

next one.

 Let the selection of Q and Q bar output of the preceding FF be controlled by the mode control

input M such that, If M = 0, UP counting. So connect Q to CLK. If M = 1, DOWN counting. So

connect Q bar to CLK.

Block Diagram

Truth Table

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 84

Operation

S.N. Condition Operation

1

Case 1 − With M = 0 (Up counting mode)

If M = 0 and M bar = 1, then the AND

gates 1 and 3 in fig. will be enabled

whereas the AND gates 2 and 4 will be

disabled.

Hence QA gets connected to the clock

input of FF-B and QB gets connected to

the clock input of FF-C.

These connections are same as those for

the normal up counter. Thus with M = 0

the circuit work as an up counter.

2

Case 2: With M = 1 (Down counting mode)

If M = 1, then AND gates 2 and 4 in fig.

are enabled whereas the AND gates 1 and

3 are disabled.

Hence QA bar gets connected to the clock

input of FF-B and QB bar gets connected

to the clock input of FF-C.

These connections will produce a down

counter. Thus with M = 1 the circuit

works as a down counter.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 85

Modulus Counter (MOD-N Counter)

The 2-bit ripple counter is called as MOD-4 counter and 3-bit ripple counter is called as MOD-8

counter. So in general, an n-bit ripple counter is called as modulo-N counter. Where, MOD number =

2n.

Type of modulus

 2-bit up or down (MOD-4)

 3-bit up or down (MOD-8)

4-bit up or down (MOD-16)

Application of counters

 Frequency counters

 Digital clock

 Time measurement

 A to D converter

 Frequency divider circuits

 Digital triangular wave generator

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 86

UNIT-5

PROGRAMMABLE DEVICES

A memory is just like a human brain. It is used to store data and instruction. Computer memory is

the storage space in computer where data is to be processed and instructions required for processing

are stored.

The memory is divided into large number of small parts. Each part is called a cell. Each location or

cell has a unique address which varies from zero to memory size minus one.

For example if computer has 64k words, then this memory unit has 64 * 1024 = 65536 memory

location. The address of these locations varies from 0 to 65535.

Memory is primarily of two types

 Internal Memory − cache memory and primary/main memory

 External Memory − magnetic disk / optical disk etc.

Characteristics of Memory Hierarchy are following when we go from top to bottom.

 Capacity in terms of storage increases.

 Cost per bit of storage decreases.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 87

 Frequency of access of the memory by the CPU decreases.

 Access time by the CPU increases.

RAM

A RAM constitutes the internal memory of the CPU for storing data, program and program result. It

is read/write memory. It is called random access memory (RAM).

Since access time in RAM is independent of the address to the word that is, each storage location

inside the memory is as easy to reach as other location & takes the same amount of time. We can

reach into the memory at random & extremely fast but can also be quite expensive.

RAM is volatile, i.e. data stored in it is lost when we switch off the computer or if there is a power

failure. Hence, a backup uninterruptible power system (UPS) is often used with computers. RAM is

small, both in terms of its physical size and in the amount of data it can hold.

RAM is of two types

 Static RAM (SRAM)

 Dynamic RAM (DRAM)

Static RAM (SRAM)

The word static indicates that the memory retains its contents as long as power remains applied.

However, data is lost when the power gets down due to volatile nature. SRAM chips use a matrix of

6-transistors and no capacitors. Transistors do not require power to prevent leakage, so SRAM need

not have to be refreshed on a regular basis.

Because of the extra space in the matrix, SRAM uses more chips than DRAM for the same amount

of storage space, thus making the manufacturing costs higher.

Static RAM is used as cache memory needs to be very fast and small.

Dynamic RAM (DRAM)

DRAM, unlike SRAM, must be continually refreshed in order for it to maintain the data. This is

done by placing the memory on a refresh circuit that rewrites the data several hundred times per

second. DRAM is used for most system memory because it is cheap and small. All DRAMs are

made up of memory cells. These cells are composed of one capacitor and one transistor.

ROM

ROM stands for Read Only Memory. The memory from which we can only read but cannot write on

it. This type of memory is non-volatile. The information is stored permanently in such memories

during manufacture.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 88

A ROM, stores such instruction as are required to start computer when electricity is first turned on,

this operation is referred to as bootstrap. ROM chip are not only used in the computer but also in

other electronic items like washing machine and microwave oven.

Following are the various types of ROM −

MROM (Masked ROM)

The very first ROMs were hard-wired devices that contained a pre-programmed set of data or

instructions. These kind of ROMs are known as masked ROMs. It is inexpensive ROM.

PROM (Programmable Read Only Memory)

PROM is read-only memory that can be modified only once by a user. The user buys a blank PROM

and enters the desired contents using a PROM programmer. Inside the PROM chip there are small

fuses which are burnt open during programming. It can be programmed only once and is not

erasable.

EPROM (Erasable and Programmable Read Only Memory)

The EPROM can be erased by exposing it to ultra-violet light for a duration of upto 40 minutes.

Usually, an EPROM eraser achieves this function. During programming an electrical charge is

trapped in an insulated gate region. The charge is retained for more than ten years because the

charge has no leakage path. For erasing this charge, ultra-violet light is passed through a quartz

crystal window (lid). This exposure to ultra-violet light dissipates the charge. During normal use the

quartz lid is sealed with a sticker.

EEPROM (Electrically Erasable and Programmable Read Only Memory)

The EEPROM is programmed and erased electrically. It can be erased and reprogrammed about ten

thousand times. Both erasing and programming take about 4 to 10 ms (millisecond). In EEPROM,

any location can be selectively erased and programmed. EEPROMs can be erased one byte at a

time, rather than erasing the entire chip. Hence, the process of re-programming is flexible but slow.

Serial Access Memory

Sequential access means the system must search the storage device from the beginning of the

memory address until it finds the required piece of data. Memory device which supports such access

is called a Sequential Access Memory or Serial Access Memory. Magnetic tape is an example of

serial access memory.

Direct Access Memory

Direct access memory or Random Access Memory, refers to conditions in which a system can go

directly to the information that the user wants. Memory device which supports such access is called

a Direct Access Memory. Magnetic disks, optical disks are examples of direct access memory.

Cache Memory

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 89

Cache memory is a very high speed semiconductor memory which can speed up CPU. It acts as a

buffer between the CPU and main memory. It is used to hold those parts of data and program which

are most frequently used by CPU. The parts of data and programs, are transferred from disk to cache

memory by operating system, from where CPU can access them.

Advantages

 Cache memory is faster than main memory.

 It consumes less access time as compared to main memory.

 It stores the program that can be executed within a short period of time.

 It stores data for temporary use.

Disadvantages

 Cache memory has limited capacity.

 It is very expensive.

Virtual memory is a technique that allows the execution of processes which are not completely

available in memory. The main visible advantage of this scheme is that programs can be larger than

physical memory. Virtual memory is the separation of user logical memory from physical memory.

This separation allows an extremely large virtual memory to be provided for programmers when

only a smaller physical memory is available. Following are the situations, when entire program is

not required to be loaded fully in main memory.

 User written error handling routines are used only when an error occurred in the data or

computation.

 Certain options and features of a program may be used rarely.

 Many tables are assigned a fixed amount of address space even though only a small amount

of the table is actually used.

 The ability to execute a program that is only partially in memory would counter many

benefits.

 Less number of I/O would be needed to load or swap each user program into memory.

 A program would no longer be constrained by the amount of physical memory that is

available.

 Each user program could take less physical memory, more programs could be run the same

time, with a corresponding increase in CPU utilization and throughput.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 90

Auxiliary Memory

Auxiliary memory is much larger in size than main memory but is slower. It normally stores system

programs, instruction and data files. It is also known as secondary memory. It can also be used as an

overflow/virtual memory in case the main memory capacity has been exceeded. Secondary

memories cannot be accessed directly by a processor. First the data/information of auxiliary

memory is transferred to the main memory and then that information can be accessed by the CPU.

Characteristics of Auxiliary Memory are following −

 Non-volatile memory − Data is not lost when power is cut off.

 Reusable − The data stays in the secondary storage on permanent basis until it is not overwritten

or deleted by the user.

 Reliable − Data in secondary storage is safe because of high physical stability of secondary

storage device.

 Convenience − With the help of a computer software, authorised people can locate and access the

data quickly.

 Capacity − Secondary storage can store large volumes of data in sets of multiple disks.

 Cost − It is much lesser expensive to store data on a tape or disk than primary memory.

The next three combinational components we will study are: ROM, PLA, and PAL.

ROM's PLA's and PAL's are storage Components. This might seem like a contradiction because

earlier we said that combinational components don't have memory. This apparent contradiction

results from an incomplete definition of the term combination component. A more precise

definition is: a combinational component is a circuit that doesn't have memory of past inputs.

(The outputs of a combinational component are completely determined by the current inputs.)

The data in the storage components we are about to study are stored at design time before the

component is added to a circuit. The data stored in sequential circuits comes from the inputs that

are received while the component is active in the circuit.

The storage components that are the topic of this lecture can be used to implement Boolean

functions. This may also be the most efficient implementation. If the function is moderately

complex a SSI implementation (individual gates) may be expensive in terms of the number of

gates that have to be purchased and in terms of the number of connections required to wire them

together. When a function is implemented inside a ROM, PLA, or PAL there is only one IC to

purchase and fewer connections.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 91

An n x m ROM can store the truth table for m functions defined on log2n variables:

Example: Implement the following functions in a ROM:

F0 = A

F1 = A'B' + AB

Since a ROM stores the complete truth table of a function (or you could say that a ROM decodes

every minterm of a function) the first step is to express each function as a truth table.

A B F0 F1

0 0 0 1

0 1 0 0

1 0 1 0

1 1 1 1

For the discussion that follows it may be helpful to keep in mind the canonical form of the

function also:

F0 = AB' + AB

F1 = A'B' + AB

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 92

We use a special notation to show the ROM implementation of a function:

The image above shows how a 4x3 ROM can be used to implement the two functions F0 and F1.

(Note, there is room in the ROM for 3 functions of two variables. F2 isn't used. I'm showing a

ROM with an unused portion to demonstrate that a ROM may still be the most efficient

implementation even when large sections of the ROM go unused.) You can imagine a decoder

inside the ROM that decodes the inputs A B. Just like the decoder we defined earlier, one output

line is selected for every unique set of inputs. If the selected output line is connected to an OR

gate the function associated with the OR gate will have a value of 1 for the particular set of

inputs.

A single vertical line that intersects 4 horizontal lines represents potentially 4 different lines or

connections. This is a notational convenience we will use when talking about ROM's, PLA's, and

PAL's because it makes the diagrams much easier to read.

The circles at the intersection of two lines indicate a connection. Connections are either formed

at the factory or in the field. If they are formed in the field a special programmable ROM is used.

One type of programmable ROM is a ROM that has a fuse at every connection. Fuses at

connections not wanted are burned by running high current through the fuse. What is left are the

connections that define the data within the ROM.

Observations

 Not very efficient implementation of sparse functions.

 A ROM that implements two functions does not require twice the number of gates as a

ROM that implements one function. (The decoder is shared by every output function.)

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 93

Programmable Logic

A programmable logic device works like a ROM but is a more efficient solution for

implementing sparse output functions. (Not all minterms are decoded.)

There are two types of programmable logic devices:

 PLA (Programmable Logic Array)

 PAL (Programmable Array Logic)

We suggested earlier that a ROM had a decoder inside it. You could visualize this as:

The image above also defines two terms we will use to distinguish between PLA and PAL

devices:

 AND Array - this is the portion of the device that decodes the inputs. The AND array

determines the minterms decoded by the device. A ROM decodes all possible minterms.

 OR Array - this is the portion of the device that combines the minterms for the definition

of a function.

PLA

A PLA is a programmable logic device with a programmable AND array and a programmable

OR array.

A PLA with n inputs has fewer than 2n AND gates (otherwise there would be no advantage over

a ROM implementation of the same size). A PLA only needs to have enough AND gates to

decode as many unique terms as there are in the functions it will implement.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 94

Because we can control the AND array and there is a limit to the number of terms that can be

specified in the AND array, it may be more economical to simplify the function before

implementing it with a PLA. If you do simplify the function and intend to implement with a PAL

device you should also keep in mind that product terms can be shared between functions.

(Product sharing is when two functions share a product term decoded by the AND array. For

example, in the image below the product term AB is shared between F0 and F1.)

Example: Implement the functions F0 F1 we introduced above using a PLA with 2 inputs, 3

product terms, and 2 outputs.

The unprogrammed PLA from the manufacture looks like:

After programming for the two functions F0 F1 the state of the PLA is:

Notice that we only need three AND gates because there are only three unique minterms in the

functions F0 and F1. Also, notice that since we have control over the OR arrays we can share the

minterm AB in the definitions of both functions.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 95

Note, there may be an advantage to simplifying the functions before implementing. In the

example used here there is no advantage. The simplified form of the functions F0 and F1 still

require 3 unique product terms. Because product terms can be shared between functions its

important to look for common product terms when simplifying.

PAL

A PAL is a programmable logic device with a programmable AND array and a fixed OR array.

A PAL has a fixed OR array. For example, here is what an un programmed PAL might look like

straight from the manufacture:

A fixed OR array makes the device less expensive to manufacture. On the other hand, having a

fixed OR array means you can't share product terms between functions.

Example: Implement the functions F0 F1 we introduced above using the PAL given above.

For this implementation we will need to simplify the functions F0 F1 because the PAL we are

given has an output function that can accommodate only one product term. The simplified form

of the functions is:

F0 = A

F1 = A'B' + AB

After programming for the two functions F0 F1 the state of the PAL is:

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 96

So, in summary:

 A PLA device has a programmable AND and programmable OR array

 A PAL device has a programmable AND and fixed OR array

 (You could also say that a ROM has a fixed AND and programmable OR array)

When implementing with a ROM there is no advantage to minimizing the functions since the

input is fully decoded. When implementing with a PLA there may be an advantage to

minimizing the expression but you also have to keep in mind that product terms can be shared

between functions. So, when you are minimizing one function you need to consider the form of

other functions and watch for product terms that can be shared. When implementing with a PAL

there may also be some advantages to minimizing the function first. However, since you can't

share product terms with a PAL you don't have to consider the form of other functions when

minimizing.

FLASH MEMORY

Dr. FujioMasuoka is credited with the invention of flash memory when he worked for Toshiba in

the 1980s. Masuoka’s colleague, Shoji Ariizumi, coined the term flash because the process of

erasing all the data from a semiconductor chip reminded him of the flash of a camera.

Flash memory evolved from erasable programmable read-only memory (EPROM) and

electrically erasable programmable read-only memory (EEPROM). Flash is technically a variant

of EEPROM, but the industry reserves the term EEPROM for byte-level erasable memory and

applies the term flash memory to larger block-level erasable memory. Devices using flash

memory erase data at the block level and rewrite data at the byte level (NOR flash) or multiple-

byte page level (NAND flash). Flash memory is widely used for storage and data transfer in

consumer devices, enterprise systems and industrial applications.

http://whatis.techtarget.com/definition/semiconductor
http://whatis.techtarget.com/definition/EPROM
http://whatis.techtarget.com/definition/EEPROM-electrically-erasable-programmable-read-only-memory
http://searchstorage.techtarget.com/definition/byte
http://searchstorage.techtarget.com/definition/byte
http://searchsoa.techtarget.com/definition/page

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 97

How flash memory works

A basic flash memory cell consists of a storage transistor with a control gate and a floating gate,

which is insulated from the rest of the transistor by a thin dielectric material or oxide layer. The

floating gate stores the electrical charge and controls the flow of the electrical current.

Electrons are added to or removed from the floating gate to change the storage transistor’s

threshold voltage to program the cell to be a zero or a one. A process called Fowler-Nordheim

tunneling removes electrons from the floating gate. Either Fowler-Nordheim tunneling or a

phenomenon known as channel hot-electron injection traps the electrons in the floating gate.

When erasing through Fowler-Nordheim tunneling, a strong negative charge on the control gate

forces electrons off the floating gate and into the channel, where a strong positive charge exists.

The reverse happens when using Fowler-Nordheim tunneling to trap electrons in the floating

gate. Electrons are able to forge through the thin oxide layer to the floating gate in the presence

of a high electric field, with a strong negative charge on the cell’s source and the drain and a

strong positive charge on the control gate.

http://whatis.techtarget.com/definition/transistor
http://searchsolidstatestorage.techtarget.com/definition/floating-gate
http://whatis.techtarget.com/definition/dielectric-material
http://whatis.techtarget.com/definition/charge-electric-charge
http://whatis.techtarget.com/definition/current
http://whatis.techtarget.com/definition/electron
http://whatis.techtarget.com/definition/voltage

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 98

With channel hot-electron injection (or hot-carrier injection), electrons gain enough energy from

the high current in the channel and attracting charge on the control gate to break through the gate

oxide and change the threshold voltage of the floating gate.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 99

Electrons are trapped in the floating gate, whether a device containing the flash memory cell is

powered on or off, because of the electrical isolation created by the oxide layer.

EPROM and EEPROM cells operate similarly to flash memory in writing, or programming, data,

but they differ from flash memory in the way they erase data. An EPROM is erased by removing

the chip from the system and exposing the array to ultraviolet light to erase data. An EEPROM

erases data electronically at the byte level, while flash memory erases data electronically at the

block level.

NOR vs. NAND flash memory

There are two types of flash memory: NOR and NAND.

NOR and NAND flash memory differ in architecture and design characteristics. NOR flash uses

no shared components and can connect individual memory cells in parallel, enabling random

access to data. A NAND flash cell is more compact in size, with fewer bit lines, and strings

together floating-gate transistors to achieve greater storage density. NAND is better suited to

serial rather than random data access.

http://whatis.techtarget.com/definition/NOR-flash-memory
http://whatis.techtarget.com/definition/NAND-flash-memory
http://whatis.techtarget.com/definition/parallel
http://whatis.techtarget.com/definition/serial

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 100

NOR flash is fast on data reads, but it is typically slower than NAND on erases and writes. NOR

flash programs data at the byte level. NAND flash programs data in pages, which are larger than

bytes but smaller than blocks. For instance, a page might be 4 kilobytes (KB), while a block

might be 128 KB to 256 KB or megabytes in size. NAND flash uses less power than NOR flash

for write-intensive applications.

NOR flash is more expensive to produce than NAND flash and tends to be used primarily in

consumer and embedded devices for boot purposes and read-only code-storage applications.

NAND flash is more suitable for data storage in consumer devices and enterprise server and

storage systems due to its lower cost per bit to store data, greater density, and higher

programming and erase speeds.

Devices such as a camera phone may use both NOR and NAND flash in addition to other

memory technologies to facilitate code execution and data storage.

Pros and cons of flash memory

Flash is the least expensive form of semiconductor memory. Unlike dynamic random access

memory (DRAM) and static RAM (SRAM), flash memory is nonvolatile, offers lower power

consumption and can be erased in large blocks. Also on the plus side, NOR flash offers fast

random reads, while NAND flash is fast with serial reads and writes

A solid-state drive (SSD) with NAND flash memory chips delivers significantly higher

performance than traditional magnetic media such as hard disk drives (HDDs) and tape. Flash

drives also consume less power and produce less heat than HDDs. Enterprise storage systems

equipped with flash drives are capable of low latency, which is measured in microseconds or

milliseconds.

The main disadvantages of flash memory are the wear-out mechanism and cell-to-cell

interference as the dies get smaller. Bits can fail with excessively high numbers of program/erase

cycles, which eventually break down the oxide layer that traps electrons. The deterioration can

distort the manufacturer-set threshold value at which a charge is determined to be a zero or a one.

Electrons may escape and get stuck in the oxide insulation layer leading to errors.

Anecdotal evidence suggests NAND flash drives are not wearing out to the degree once feared.

Flash drive manufacturers have improved endurance and reliability through error correction code

algorithms, wear leveling and other technologies. In addition, SSDs do not wear out without

warning. They typically alert users in the same way a sensor might indicate an underinflated tire.

http://searchstorage.techtarget.com/definition/kilobyte
http://searchstorage.techtarget.com/definition/megabyte
http://whatis.techtarget.com/definition/embedded-device
http://searchwindowsserver.techtarget.com/definition/boot
http://searchstorage.techtarget.com/definition/DRAM
http://whatis.techtarget.com/definition/SRAM-static-random-access-memory
http://searchstorage.techtarget.com/definition/solid-state-drive
http://searchstorage.techtarget.com/definition/hard-disk-drive
http://searchstorage.techtarget.com/definition/tape
http://whatis.techtarget.com/definition/latency
http://whatis.techtarget.com/definition/microsecond
http://whatis.techtarget.com/definition/millisecond
http://searchsolidstatestorage.techtarget.com/definition/NAND-flash-wear-out
http://searchsolidstatestorage.techtarget.com/definition/solid-state-storage-program-erase-cycle
http://searchsolidstatestorage.techtarget.com/definition/solid-state-storage-program-erase-cycle
http://searchsolidstatestorage.techtarget.com/definition/write-endurance
http://searchnetworking.techtarget.com/definition/ECC
http://searchsolidstatestorage.techtarget.com/definition/wear-leveling

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 101

NAND flash memory storage types

NAND flash semiconductor manufacturers have developed different types of memory suitable

for a wide range of data storage uses cases. NOR flash memory types

The two main types of NOR flash memory are parallel and serial (also known as serial peripheral

interface). NOR flash originally was available only with a parallel interface. Parallel NOR offers

high performance, security and additional features; its primary uses include industrial,

automotive, networking, and telecom systems and equipment. Serial NOR flash has lower pin

counts and smaller packaging and is less expensive than parallel NOR. Use cases for serial NOR

include personal and ultra-thin computers, servers, HDDs, printers, digital cameras, modems and

routers.

Flash memory producers and products

Major manufacturers of NAND flash memory chips include Intel, Micron, Samsung, SanDisk,

SK Hynix and Toshiba. Major manufacturers of NOR flash memory include Macronix,

Microchip, Micron, Spansion and Winbond. Flash memory is used in enterprise server, storage

and networking technology as well as a wide range of consumer devices, including USB drives,

mobile phones, digital cameras, tablet computers, PC cards in notebook computers and

embedded controllers. For instance, NAND flash-based SSDs are often used to accelerate the

performance of I/O-intensive applications. NOR flash memory is often used to hold control code

such as the basic input/output system (BIOS) in a PC. Flash memory is seeing growing use for

in-memory computing to help speed performance and increase the scalability of systems that

manage and analyze enormous amounts of data.

Content-addressable memories (CAMs) are hardware search engines that are much faster than

algorithmic approaches for search-intensive applications. CAMs are composed of conventional

semiconductor memory (usually SRAM) with added comparison circuitry that enable a search

operation to complete in a single clock cycle. The two most common search-intensive tasks that

use CAMs are packet forwarding and packet classification in Internet routers.

1 101XX A

2 0110X B

3 011XX C

4 10011 D

http://whatis.techtarget.com/definition/serial-peripheral-interface-SPI
http://whatis.techtarget.com/definition/serial-peripheral-interface-SPI
http://whatis.techtarget.com/definition/Intel
http://searchstorage.techtarget.com/definition/USB-drive
http://searchcio-midmarket.techtarget.com/definition/PC-Card
http://whatis.techtarget.com/definition/controller
http://searchsolidstatestorage.techtarget.com/definition/flash-based-solid-state-drive-SSD
http://whatis.techtarget.com/definition/input-output-I-O
http://whatis.techtarget.com/definition/BIOS-basic-input-output-system

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 102

The routing parameters that determine the complexity of the implementation are the entry size,

the table size, the search rate, and the table update rate. Present IPv4 addresses are 32 bits long

and proposed IPv6 addresses are 128 bits long. Ancillary information like the source address and

quality-of-service (QoS) information can balloon IPv6 routing table entry sizes to 288—576 bits.

Currently, routing table sizes are about 30,000 entries but are growing rapidly. Terabit-class

routers must perform hundreds of millions of searches per second in addition to thousands of

routing table updates per second.

There are many software-based methods to implement the address lookup function [RSBD01],

although not all can meet the above requirements. For example, software-based binary searching

accomplishes the task if the lookup table is ordered. Binary searching has O(log n) time

complexity in addition to the extra time required to insert a new entry in the table. Almost all

algorithmic approaches are too slow to keep up with projected routing requirements. In contrast,

CAMs use hardware to complete a search in a single cycle, resulting in constant O(1) time

complexity. This is accomplished by adding comparison circuitry to every cell of hardware

memory. The result is a fast, massively parallel lookup engine. The strength of CAMs over

algorithmic approaches is their high search throughput. The current bottleneck is the large power

consumption due to the large amount of comparison circuitry activated in parallel. Reducing the

power consumption is a key aim of current CAM research.

Line No. Address (Binary) Output Port

1 101XX A

2 0110X B

3 011XX C

4 10011 D

There are two basic forms of CAM: binary and ternary. Binary CAMs support storage and

searching of binary bits, zero or one (0,1). Ternary CAMs support storing of zero, one, or don't

care bit (0,1,X). Ternary CAMs are presently the dominant CAM since longest-prefix routing is

the Internet standard. Figure 1 shows a block diagram of a simplified 4 x 5 bit ternary CAM with

a NOR-based architecture. The CAM contains the routing table from Table 1 to illustrate how a

CAM implements address lookup. The CAM core cells are arranged into four horizontal words,

each five bits long. Core cells contain both storage and comparison circuitry. The search lines

run vertically in the figure and broadcast the search data to the CAM cells. The match lines run

horizontally across the array and indicate whether the search data matches the row's word. An

activated match line indicates a match and a deactivated match line indicates a non-match, called

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 103

a mismatch in the CAM literature. The match lines are inputs to an encoder that generates the

address corresponding to the match location.

A CAM search operation begins with pre-charging all match lines high, putting them all

temporarily in the match state. Next, the search line drivers broadcast the search data, 01101 in

the figure, onto the search lines. Then each CAM core cell compares its stored bit against the bit

on its corresponding search lines. Cells with matching data do not affect the match line but cells

with a mismatch pull down the match line. Cells storing an X operate as if a match has occurred.

The aggregate result is that match lines are pulled down for any word that has at least one

mismatch. All other match lines remain activated (pre-charged high). In the figure, the two

middle match line remain activated, indicating a match, while the other match line discharge to

ground, indicating a mismatch. Last, the encoder generates the search address location of the

matching data. In the example, the encoder selects numerically the smallest numbered match line

of the two activated match line, generating the match address 01. This match address is used as

the input address to a RAM that contains a list of output ports as depicted in Figure 2. This

CAM/RAM system is a complete implementation of an address lookup engine. The match

address output of the CAM is in fact a pointer used to retrieve associated data from the RAM. In

this case the associated data is the output port. The CAM/RAM search can be viewed as a

dictionary lookup where the search data is the word to be queried and the RAM contains the

word definitions. With this sketch of CAM operation, we now look at the comparison circuitry in

the CAM core cells.

CHARGE COUPLED DEVICE (CCD)

Fundamentally, a charge coupled device (CCD) is an integrated circuit etched onto a silicon

surface forming light sensitive elements called pixels. Photons incident on this surface generate

charge that can be read by electronics and turned into a digital copy of the light patterns falling

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 104

on the device. CCDs come in a wide variety of sizes and types and are used in many applications

from cell phone cameras to high-end scientific applications. The charge-coupled device was

invented in 1969 at AT&T Bell Labs by Willard Boyle and George E. Smith.

Basics of operation

An image is projected through a lens onto the capacitor array (the photoactive region), causing

each capacitor to accumulate an electric charge proportional to the light intensity at that location.

A one-dimensional array, used in line-scan cameras, captures a single slice of the image, whereas

a two-dimensional array, used in video and still cameras, captures a two-dimensional picture

corresponding to the scene projected onto the focal plane of the sensor. Once the array has been

exposed to the image, a control circuit causes each capacitor to transfer its contents to its

neighbor (operating as a shift register). The last capacitor in the array dumps its charge into a

charge amplifier, which converts the charge into a voltage. By repeating this process, the

controlling circuit converts the entire contents of the array in the semiconductor to a sequence of

voltages. In a digital device, these voltages are then sampled, digitized, and usually stored in

memory; in an analog device (such as an analog video camera), they are processed into a

continuous analog signal (e.g. by feeding the output of the charge amplifier into a low-pass

filter), which is then processed and fed out to other circuits for transmission, recording, or other

processing.

Field-programmable gate arrays (FPGAs)

Field-programmable gate arrays (FPGAs) are reprogrammable silicon chips. Ross Freeman, the

cofounder of Xilinx, invented the first FPGA in 1985. FPGA chip adoption across all industries

is driven by the fact that FPGAs combine the best parts of application-specific integrated circuits

(ASICs) and processor-based systems. FPGAs provide hardware-timed speed and reliability, but

they do not require high volumes to justify the large upfront expense of custom ASIC design.

Reprogrammable silicon also has the same flexibility of software running on a processor-based

system, but it is not limited by the number of processing cores available. Unlike processors,

FPGAs are truly parallel in nature, so different processing operations do not have to compete for

the same resources. Each independent processing task is assigned to a dedicated section of the

chip, and can function autonomously without any influence from other logic blocks. As a result,

the performance of one part of the application is not affected when you add more processing.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 105

Figure 1.One of the benefits of FPGAs over processor-based systems is that the application logic

is implemented in hardware circuits rather than executing on top of an OS, drivers, and

application software.

Defining the Parts of an FPGA

Every FPGA chip is made up of a finite number of predefined resources with programmable

interconnects to implement a reconfigurable digital circuit and I/O blocks to allow the circuit to

access the outside world.

Figure 2. The Different Parts of an FPGA

FPGA resource specifications often include the number of configurable logic blocks, number of

fixed function logic blocks such as multipliers, and size of memory resources like embedded

block RAM. Of the many FPGA chip parts, these are typically the most important when

selecting and comparing FPGAs for a particular application.

N A R A Y A N A E N G I N E E R I N G C O L L E G E | | G U D U R

Page 106

The configurable logic blocks (CLBs) are the basic logic unit of an FPGA. Sometimes referred to

as slices or logic cells, CLBs are made up of two basic components: flip-flops and lookup tables

(LUTs). Various FPGA families differ in the way flip-flops and LUTs are packaged together, so

it is important to understand flip-flops and LUTs.

