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UNIT I 

GRID AND CLOUD COMPUTING 

SCALABLE COMPUTING OVER THE INTERNET 

In this section, we assess evolutionary changes in machine architecture, operating system platform, network 

connectivity, and application workload. Instead of using a centralized computer to solve computational problems, a 

parallel and distributed computing system uses multiple computers to solve large-scale problems over the Internet. 

 

 The Age of Internet Computing 

 

Billions of people use the Internet every day. As a result, supercomputer sites and large data centers must provide 

high-performance computing services to huge numbers of Internet users concurrently. Because of this high demand, 

the Linpack Benchmark for high-performance computing (HPC) applications is no longer optimal for measuring 

system performance. The emergence of computing clouds instead demands high-throughput computing (HTC) 

systems built with parallel and distributed computing technologies. 

 The Platform Evolution 

Computer technology has gone through five generations of development, with each generation lasting 

from 10 to 20 years. Successive generations are overlapped in about 10 years. 

from 1950 to 1970, a handful of mainframes, including the IBM 360 and CDC 6400, 

From 1960 to 1980, lower-cost minicomputers such as the DEC PDP 11 and VAX Series became popular 

From 1970 to 1990, we saw widespread use of personal computers built with VLSI microprocessors. 

From 1980 to 2000, massive numbers of portable computers and pervasive devices appeared in both 

wired and wireless applications. 

Since 1990, the use of both HPC and HTC systems hidden in clusters, grids, or Internet clouds has 

proliferated. 

 

The evolution of HPC and HTC systems. On the HPC side, supercomputers (massively parallel 

processors or MPPs) are gradually replaced by clusters of cooperative computers. The cluster is often a 

collection of homogeneous compute nodes that are physically connected in close range to one another. 

On the HTC side, peer-to-peer (P2P) networks are formed for distributed file sharing and content delivery 

applications. A P2P system is built over many client machines. Peer machines are globally distributed in 

nature. P2P, cloud computing, and web service platforms are more focused on HTC applications than on 

HPC applications. 
 High-Performance Computing 

 

For many years, HPC systems emphasize the raw speed performance. The speed of HPC systems has increased from 

Gflops in the early 1990s to now Pflops in 2010. This improvement was driven mainly by the demands from 

scientific, engineering, and manufacturing communities. 

 

 High-Throughput Computing 
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This HTC paradigm pays more attention to high-flux computing. The main application for high-flux computing is in 

Internet searches and web services by millions or more users simultaneously. HTC technology needs to not only 

improve in terms of batch processing speed, but also address the acute problems of cost, energy savings, security, 

and reliability at many data and enterprise computing centers. 

 

Three New Computing Paradigms 
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Advances in virtualization make it possible to see the growth of Internet clouds as a new computing paradigm. The 

maturity of radio-frequency identification (RFID), Global Positioning System (GPS), and sensor technologies has 

triggered the development of the Internet of Things (IoT). 

 

probably see the spread of computer utilities, which like present electric and telephone utilities, Many people have 

redefined the term ―computer, since that time. In 1984, John Gage of Sun Microsystems created the slogan, ―The 

network is the computer. In 2008,David Patterson of UC Berkeley said, ―The data center is the computer. 

Recently, Rajkumar Buyya of Melbourne University simply said: ―The cloud is the computer. 

 

In fact, the differences among clusters, grids, P2P systems, and clouds may blur in the future. Some people view 

clouds as grids or clusters with modest changes through virtualization. 

 

Computing Paradigm Distinctions 

 

In general, distributed computing is the opposite of centralized computing. The field of parallel computing overlaps 

with distributed computing to a great extent, and cloud computing overlaps with distributed, centralized, and parallel 

computing. 

 

• Centralized computing is a computing paradigm by which all computer resources are centralized in one physical 

system. All resources (processors, memory, and storage) are fully shared and tightly coupled within one integrated 

OS. Many data centers and supercomputers are centralized systems, but they are used in parallel, distributed, and 

cloud computing applications. 

 

• Parallel computing, In this parallel computing, all processors are either tightly coupled with centralized shared 

memory or loosely coupled with distributed memory. A computer system capable of parallel computing is 

commonly known as a parallel computer. Programs running in a parallel computer are called parallel programs. The 

process of writing parallel programs is often referred to as parallel programming. 

 

• Distributed computing is a distributed system consists of multiple autonomous computers, each having its own 

private memory, communicating through a computer network. Information exchange in a distributed system is 

accomplished through message passing. A computer program that runs in a distributed system is known as a 

distributed program. The process of writing distributed programs is referred to as distributed programming. 

 

• Cloud computing An Internet cloud of resources can be either a centralized or a distributed computing system. The 

cloud applies parallel or distributed computing, or both. Clouds can be built with physical or virtualized resources 

over large data centers that are centralized or distributed. 

 

Concurrent computing is refer to the union of parallel computing and distributing computing, 

 

Ubiquitous computing refers to computing with pervasive devices at any place and time using wired or wireless 

communication. Finally, the term Internet computing is even broader and covers all computing paradigms over the 

Internet. 

 

Distributed System Families 

 

Since the mid-1990s, technologies for building P2P networks and networks of clusters have been 

consolidated into many national projects designed to establish wide area computing infrastructures, known as 

computational grids or data grids. 

 

Massively distributed systems are intended to exploit a high degree of parallelism or concurrency among many 

machines. In October 2010, the highest performing cluster machine was built in China with 86016 CPU processor 

cores and 3,211,264 GPU cores in a Tianhe-1A system. The largest computational grid connects up to hundreds of 

server clusters. A typical P2P network may involve millions of client machines working simultaneously. 

Experimental cloud computing clusters have been built with thousands of processing nodes. In the future, both HPC 
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and HTC systems will demand multi core or many-core processors that can handle large numbers of computing 

threads per core. Both HPC and HTC systems emphasize parallelism and distributed computing. 

 

 

design objectives: 
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• Efficiency measures the utilization rate of resources in an execution model by exploiting massive 

parallelism in HPC. For HTC, efficiency is more closely related to job throughput, data access, storage, 

and power efficiency. 

• Dependability measures the reliability and self-management from the chip to the system and application 

levels. The purpose is to provide high-throughput service with Quality of Service (QoS) assurance, even 

under failure conditions. 

• Adaptation in the programming model measures the ability to support billions of job requests over 

massive data sets and virtualized cloud resources under various workload and service models. 

• Flexibility in application deployment measures the ability of distributed systems to run well in both 

HPC (science and engineering) and HTC (business) applications. 

 
 Scalable Computing Trends and New Paradigms 

 

Several predictable trends in technology are known to drive computing applications. Jim Gray’s paper, ―Rules of 

Thumb in Data Engineering, is an excellent example of how technology affects applications and vice versa. In 

addition, Moore’s law indicates that processor speed doubles every 18 months. Gilder’s law indicates that network 

bandwidth has doubled each year in the past. For now, it’s important to understand how distributed systems 

emphasize both resource distribution and concurrency or high degree of parallelism (DoP). 

 

 Degrees of Parallelism 
Fifty years ago, when hardware was bulky and expensive, most computers were designed in a bit-serial 

fashion. In this scenario, bit-level parallelism (BLP) converts bit-serial processing to word-level 

processing gradually. Over the years, users graduated from 4-bit microprocessors to 8-, 16-, 32-, and 64- 

bit CPUs. This led us to the next wave of improvement, known as instruction-level parallelism (ILP), in 

which the processor executes multiple instructions simultaneously rather than only one instruction at a 

time. Data-level parallelism (DLP) was made popular through SIMD (single instruction, multiple data) 

and vector machines using vector or array types of instructions. we have been exploring task-level 

parallelism (TLP). To increase in computing granularity to job-level parallelism (JLP). It is fair to say 

that coarse-grain parallelism is built on top of fine-grain parallelism. 
Innovative Applications 

 

Both HPC and HTC systems desire transparency in many application aspects. For example, data access, resource 

allocation, process location, concurrency in execution, job replication, and failure recovery should be made 

transparent to both users and system management. Some applications spread across many important domains in 

science, engineering, business, education, health care, traffic control, Internet and web services, military, and 

government applications. 

 

 

The Trend toward Utility Computing 

 

It identifies major computing paradigms to facilitate the study of distributed systems and their applications. These 

paradigms share some common characteristics. First, they are all ubiquitous in daily life. Reliability and scalability 

are two major design objectives in these computing models. Second, they are aimed at autonomic operations that can 
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be self-organized to support dynamic discovery. Finally, these paradigms are compassable with QoS and SLAs 

(service-level agreements). These paradigms and their attributes realize the computer utility vision. 

 

Utility computing focuses on a business model in which customers receive computing resources from a paid service 

provider. All grid/cloud platforms are regarded as utility service providers. However, cloud computing offers a 

broader concept than utility computing. Distributed 
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cloud applications run on any available servers in some edge networks. Major technological challenges include all 

aspects of computer science and engineering. For example, users demand new network-efficient processors, scalable 

memory and storage schemes, distributed OSes, middleware for machine virtualization, new programming models, 

effective resource management, and application program development. These hardware and software supports are 

necessary to build distributed systems that explore massive parallelism at all processing levels. 

 

The Hype Cycle of New Technologies 

 

Any new and emerging computing and information technology may go through a hype cycle. This cycle shows the 

expectations for the technology at five different stages. The number of years for an emerging technology to reach a 

certain stage is marked by special symbols. The hollow circles indicate technologies that will reach mainstream 

adoption in two years. The gray circles represent technologies that will reach mainstream adoption in two to five 

years. The solid circles represent those that require five to 10 years to reach mainstream adoption, and the triangles 

denote those that require more than 10 years. The crossed circles represent technologies that will become obsolete 

before they reach the plateau. 

 

 
Hype Cycles are graphical representations of the relative maturity of technologies, IT methodologies and 

management disciplines. They are intended solely as a research tool, and not as a specific guide to action. Gartner 

disclaims all warranties, express or implied, with respect to this research, including any warranties of 
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merchantability or fitness for a particular purpose. 

 

 The Internet of Things and Cyber-Physical Systems 
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In this section, we will discuss two Internet development trends: the Internet of Things and cyber-physical systems. 

The Internet of Things 

 

The traditional Internet connects machines to machines or web pages to web pages. The concept of the IoT was 

introduced in 1999 at MIT . The IoT refers to the networked interconnection of everyday objects, tools, devices, or 

computers. One can view the IoT as a wireless network of sensors that interconnect all things in our daily life. These 

things can be large or small and they vary with respect to time and place. The idea is to tag every object using RFID 

or a related sensor or electronic technology such as GPS. 

 

With the introduction of the IPv6 protocol, 2128 IP addresses are available to distinguish all the objects on Earth, 

including all computers and pervasive devices. The IoT researchers have estimated that every human being will be 

surrounded by 1,000 to 5,000 objects. The IoT needs to be designed to track 100 trillion static or moving objects 

simultaneously. The IoT demands universal addressability of all of the objects or things. 

 

To reduce the complexity of identification, search, and storage, one can set the threshold to filter out fine-grain 

objects. The IoT obviously extends the Internet and is more heavily developed in Asia and European countries. In 

the IoT era, all objects and devices are instrumented, interconnected, and interacted with each other intelligently. 

This communication can be made between people and things or among the things themselves. Three communication 

patterns co-exist: namely H2H (human-to-human), H2T (human-to-thing), and T2T (thing-to-thing). Here things 

include machines such as PCs and mobile phones. The idea here is to connect things (including human and machine 

objects) at any time and any place intelligently with low cost. 

 

Cyber-Physical Systems 

 

A cyber-physical system (CPS) is the result of interaction between computational processes and the physical world. 

A CPS integrates ―cyber‖ (heterogeneous, asynchronous) with ―physical‖ (concurrent and information-dense) 

objects. A CPS merges the ―3C technologies of computation, communication, and control into an intelligent closed 

feedback system between the physical world and the information world, a concept which is actively explored in the 

United States. The IoT emphasizes various networking connections among physical objects, while the CPS 

emphasizes exploration of virtual reality (VR) applications in the physical world. 

 

TECHNOLOGIES FOR NETWORK-BASED SYSTEMS 

 

With the concept of scalable computing under our belt, it’s time to explore hardware, software, and network 

technologies for distributed computing system design and applications. 

 

Multicore CPUs and Multithreading Technologies 

 

Consider the growth of component and network technologies over the past 30 years. They are crucial to the 

development of HPC and HTC systems. processor speed is measured in millions of instructions per second (MIPS) 

and network bandwidth is measured in megabits per second (Mbps) or gigabits per second (Gbps). The unit GE 

refers to 1 Gbps Ethernet bandwidth. 

 

Advances in CPU Processors 

 

Today, advanced CPUs or microprocessor chips assume a multi core architecture with dual, quad, six, or more 

processing cores. These processors exploit parallelism at ILP and TLP levels. Processor speed growth is plotted in 

the upper curve across generations of microprocessors or CMPs. We see growth from 1 MIPS for the VAX 780 in 

1978 to 1,800 MIPS for the Intel Pentium 4 in 2002, up to a 22,000 MIPS peak for the Sun Niagara 2 in 2008. As 

the figure shows, Moore’s law has proven to be pretty accurate in this case. The clock rate for these processors 

increased from 10 MHz for the Intel 286 to 4GHz for the Pentium 4 in 30 years. 

 

However, the clock rate reached its limit on CMOS-based chips due to power limitations. At the time of this writing, 

very few CPU chips run with a clock rate exceeding 5 GHz. In other words, clock rate will not continue to improve 
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unless chip technology matures. This limitation is attributed primarily to excessive heat generation with high 

frequency or high voltages. The ILP is highly exploited in modern CPU processors. ILP mechanisms include 

multiple-issue superscalar architecture, dynamic branch prediction, and speculative execution, among others. These 

ILP techniques demand hardware and compiler support. In addition, DLP and TLP are highly explored in graphics 

processing units (GPUs) that adopt a many-core architecture with hundreds to thousands of simple cores. Both 

multi-core CPU and many-core GPU processors can handle multiple instruction threads at different magnitudes 
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today. The architecture of a typical multicore processor. Each core is essentially a processor with its own private 

cache (L1 cache). Multiple cores are housed in the same chip with an L2 cache that is shared by all cores. In the 

future, multiple CMPs could be built on the same CPU chip with even the L3 cache on the chip. Multicore and 

multithreaded CPUs are equipped with many high-end processors, including the Intel i7, Xeon, AMD Opteron, Sun 

Niagara, IBM Power 6, and X cell processors. Each core could be also multithreaded. For example, the Niagara II is 

built with eight cores with eight threads handled by each core. This implies that the maximum ILP and TLP that can 

be exploited in Niagara is 64 (8 × 8 = 64). In 2011, the Intel Core i7 990x has reported 159,000 MIPS execution rate 

as shown in the upper- most square. 

 

 
 

 

Schematic of a modern multi core CPU chip using a hierarchy of caches, where L1 cache is private to each core, on- 

chip L2 cache is shared and L3 cache or DRAM Is off the chip. 

 

Multi core CPU and Many-Core GPU Architectures 

 

Multi core CPUs may increase from the tens of cores to hundreds or more in the future. But the CPU has reached its 

limit in terms of exploiting massive DLP due to the aforementioned memory wall problem. This has triggered the 

development of many-core GPUs with hundreds or more thin cores. Both IA-32 and IA-64 instruction set 

architectures are built into commercial CPUs. Now, x-86 processors have been extended to serve HPC and HTC 
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systems in some high-end server processors. Many RISC processors have been replaced with multi core x-86 

processors and many-core GPUs in the Top 500 systems. This trend indicates that x-86 upgrades will dominate in 

data centers and supercomputers. The GPU also has been applied in large clusters to build supercomputers in MPPs. 

In the future, the processor industry is also keen to develop asymmetric or heterogeneous chip multiprocessors that 

can house both fat CPU cores and thin GPU cores on the same chip. 
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Multithreading Technology 

 

Consider the dispatch of five independent threads of instructions to four pipelined data paths (functional units) in 

each of the following five processor categories, from left to right: a four-issue superscalar processor, a fine-grain 

multithreaded processor, a coarse-grain multithreaded processor, a two-core CMP, and a simultaneous multithreaded 

(SMT) processor. The superscalar processor is single-threaded with four functional units. Each of the three 

multithreaded processors is four-way multithreaded over four functional data paths. In the dual-core processor, 

assume two processing cores, each a single-threaded two-way superscalar processor. 

 

Five micro-architectures in modern CPU processors, that exploit ILP and TLP supported by multi core and 

multithreading technologies. Instructions from different threads are distinguished by specific shading patterns for 

instructions from five independent threads. 

 
 

 

Typical instruction scheduling patterns are shown here. Only instructions from the same thread are executed in a 

superscalar processor. Fine-grain multithreading switches the execution of instructions from different threads per 

cycle. Course-grain multithreading executes many instructions from the same thread for quite a few cycles before 

switching to another thread. The multi core CMP executes instructions from different threads completely. The SMT 

allows simultaneous scheduling of instructions from different threads in the same cycle. 

 

2 GPU Computing to Exascale and Beyond 

 

A GPU is a graphics coprocessor or accelerator mounted on a computer’s graphics card or video card. A GPU 

offloads the CPU from tedious graphics tasks in video editing applications. The world’s first GPU, the GeForce 256, 

was marketed by NVIDIA in 1999. These GPU chips can process a minimum of 10 million polygons per second, 

and are used in nearly every computer on the market today. Some GPU features were also integrated into certain 

CPUs. Traditional CPUs are structured with only a few cores. For example, the Xeon X5670 CPU has six cores. 

However, a modern GPU chip can be built with hundreds of processing cores. Unlike CPUs, GPUs have a 
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throughput architecture that exploits massive parallelism by executing many concurrent threads slowly, instead of 

executing a single long thread in a conventional microprocessor very quickly. Lately, parallel GPUs or GPU clusters 

have been garnering a lot of attention against the use of CPUs with limited parallelism.General-purpose computing 

on GPUs, known as GPGPUs, have appeared in the HPC field. 

 

How GPUs Work 



 

NARAYANA ENGINEERING COLLEGE::GUDUR                          Prepared By Mr.U.Satyanarayana 

 

Early GPUs functioned as coprocessors attached to the CPU. Today, the NVIDIA GPU has been upgraded to 128 

cores on a single chip. Furthermore, each core on a GPU can handle eight threads of instructions. This translates to 

having up to 1,024 threads executed concurrently on a single GPU. This is true massive parallelism, compared to 

only a few threads that can be handled by a conventional CPU. The CPU is optimized for latency caches, while the 

GPU is optimized to deliver much higher throughput with explicit management of on-chip memory. 

 

Modern GPUs are not restricted to accelerated graphics or video coding. They are used in HPC systems to power 

supercomputers with massive parallelism at multi core and multithreading levels. GPUs are designed to handle large 

numbers of floating-point operations in parallel. In a way, the GPU offloads the CPU from all data-intensive 

calculations, not just those that are related to video processing. Conventional GPUs are widely used in mobile 

phones, game consoles, embedded systems, PCs, and servers. The NVIDIA CUDA Tesla or Fermi is used in GPU 

clusters or in HPC systems for parallel processing of massive floating-pointing data. 

 

GPU Programming Model 

 

The interaction between a CPU and GPU in performing parallel execution of floating-point operations concurrently. 

The CPU is the conventional multi core processor with limited parallelism to exploit. The GPU has a many-core 

architecture that has hundreds of simple processing cores organized as multiprocessors. Each core can have one or 

more threads. Essentially, the CPU’s floating-point kernel computation role is largely offloaded to the many-core 

GPU. The CPU instructs the GPU to perform massive data processing. The bandwidth must be matched between the 

on-board main memory and the on-chip GPU memory. This process is carried out in NVIDIA’s CUDA 

programming using the GeForce 8800 or Tesla and Fermi GPUs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The use of a GPU along with a CPU for massively parallel execution in hundreds or thousands of processing cores. 
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Virtual Machines and Virtualization Middleware 
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A conventional computer has a single OS image. This offers a rigid architecture that tightly couples application 

software to a specific hardware platform. Some software running well on one machine may not be executable on 

another platform with a different instruction set under a fixed OS. Virtual machines (VMs) offer novel solutions to 

underutilized resources, application inflexibility, software manageability, and security concerns in existing physical 

machines. 
 

 

Today, to build large clusters, grids, and clouds, we need to access large amounts of computing, storage, 

and networking resources in a virtualized manner. 

Virtual Machines 
The host machine is equipped with the physical hardware. An example is an x-86 architecture desktop running its 

installed Windows OS. The VM can be provisioned for any hardware system. The VM is built with virtual resources 

managed by a guest OS to run a specific application. Between the VMs and the host platform, one needs to deploy a 

middleware layer called a virtual machine monitor (VMM). A native VM installed with the use of a VMM called a 

hypervisor in privileged mode. For example, the hardware has x-86 architecture running the Windows system. 

 

The guest OS could be a Linux system and the hypervisor is the XEN system developed at Cambridge 

University. This hypervisor approach is also called bare-metal VM, because the hypervisor handles the 

bare hardware (CPU, memory, and I/O) directly. Another architecture is the host VM here the VMM runs 

in nonprivileged mode. The host OS need not be modified. The VM can also be implemented with a dual 

mode. Part of the VMM runs at the user level and another part runs at the supervisor level. In this case, 

the host OS may have to be modified to some extent. Multiple VMs can be ported to a given hardware 

system to support the virtualization process. The VM approach offers hardware independence of the OS 

and applications. The user application running on its dedicated OS could be bundled together as a virtual 

appliance that can be ported to any hardware platform. The VM could run on an OS different from that of 

the host computer. 

VM Primitive Operations 

The VMM provides the VM abstraction to the guest OS. With full virtualization, the VMM exports a VM 

abstraction identical to the physical machine so that a standard OS such as 
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VM multiplexing, suspension, provision, and migration in a distributed computing environment. 

• First, the VMs can be multiplexed between hardware machines, 

• Second, a VM can be suspended and stored in stable storage, 

• Third, a suspended VM can be resumed or provisioned to a new hardware platform, 

• Finally, a VM can be migrated from one hardware platform to another, 
These VM operations enable a VM to be provisioned to any available hardware platform. They also enable 

flexibility in porting distributed application executions. Furthermore, the VM approach will significantly enhance 

the utilization of server resources. Multiple server functions can be consolidated on the same hardware platform to 

achieve higher system efficiency. This will eliminate server sprawl via deployment of systems as VMs, which move 

transparency to the shared hardware. With this approach, VMware claimed that server utilization could be increased 

from its current 5–15 percent to 60–80 percent. 

Virtual Infrastructures 

Physical resources for compute, storage, and networking at the bottom are mapped to the needy 

applications embedded in various VMs at the top. Hardware and software are then separated. Virtual 

infrastructure is what connects resources to distributed applications. It is a dynamic mapping of system 

resources to specific applications. The result is decreased costs and increased efficiency and 

responsiveness. Virtualization for server consolidation and containment is a good example of this. 
CLUSTERS OF COOPERATIVE COMPUTERS 

 

A computing cluster consists of interconnected stand-alone computers which work cooperatively as a single 

integrated computing resource. In the past, clustered computer systems have demonstrated impressive results in 

handling heavy workloads with large data sets. 

 

Cluster Architecture 

 

The architecture of a typical server cluster built around a low-latency, high-bandwidth interconnection network. This 

network can be as simple as a SAN (e.g., Myrinet) or a LAN (e.g., Ethernet). To build a larger cluster with more 

nodes, the interconnection network can be built with multiple levels of Gigabit Ethernet, Myrinet, or InfiniBand 

switches. Through hierarchical construction using a SAN, LAN, or WAN, one can build scalable clusters with an 

increasing number of nodes. The cluster is connected to the Internet via a virtual private network 
 

 
(VPN) gateway. The gateway IP address locates the cluster. The system image of a computer is decided by the way 

the OS manages the shared cluster resources. Most clusters have loosely coupled node computers. All resources of a 

server node are managed by their own OS. Thus, most clusters have multiple system images as a result of having 

many autonomous nodes under different OS control. 
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Single-System Image 

Greg Pfister has indicated that an ideal cluster should merge multiple system images into a single-system 

image (SSI). Cluster designers desire a cluster operating system or some middleware to support SSI at 

various levels, including the sharing of CPUs, memory, and I/O across all cluster nodes. An SSI is an 

illusion created by software or hardware that presents a collection of resources as one integrated, powerful 

resource. SSI makes the cluster appear like a single machine to the user. A cluster with multiple system 

images is nothing but a collection of independent computers. 
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Hardware, Software, and Middleware Support 

Clusters exploring massive parallelism are commonly known as MPPs. Almost all HPC clusters in the 

Top 500 list are also MPPs. The building blocks are computer nodes (PCs, workstations, servers, or 

SMP), special communication software such as PVM or MPI, and a network interface card in each 

computer node. Most clusters run under the Linux OS. The computer nodes are interconnected by a high- 

bandwidth network (such as Gigabit Ethernet, Myrinet, InfiniBand, etc.). 
Special cluster middleware supports are needed to create SSI or high availability (HA). Both sequential and parallel 

applications can run on the cluster, and special parallel environments are needed to facilitate use of the cluster 

resources. For example, distributed memory has multiple images. Users may want all distributed memory to be 

shared by all servers by forming distributed shared memory (DSM). Many SSI features are expensive or difficult to 

achieve at various cluster operational levels. Instead of achieving SSI, many clusters are loosely coupled machines. 

Using virtualization, one can build many virtual clusters dynamically, upon user demand. 

Major Cluster Design Issues 

Unfortunately, a cluster-wide OS for complete resource sharing is not available yet. Middleware or OS 

extensions were developed at the user space to achieve SSI at selected functional levels. Without this 

middleware, cluster nodes cannot work together effectively to achieve cooperative computing. The 

software environments and applications must rely on the middleware to achieve high performance. The 

cluster benefits come from scalable performance, efficient message passing, high system availability, 

seamless fault tolerance, and cluster-wide job management. 
GRID COMPUTING INFRASTRUCTURES 

 

In the past 30 years, users have experienced a natural growth path from Internet to web and grid computing services. 

Internet services such as the Telnet command enables a local computer to connect to a remote computer. A web 

service such as HTTP enables remote access of remote web pages. Grid computing is envisioned to allow close 

interaction among applications running on distant computers simultaneously. Forbes Magazine has projected the 

global growth of the IT-based economy from $1 trillion in 2001 to $20 trillion by 2015. The evolution from Internet 

to web and grid services is certainly playing a major role in this growth. 

 

 
Computational Grids 
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Like an electric utility power grid, a computing grid offers an infrastructure that couples computers, 

software/middleware, special instruments, and people and sensors together. The grid is often constructed across 

LAN, WAN, or Internet backbone networks at a regional, national, or global scale. Enterprises or organizations 

present grids as integrated computing resources. They can also be viewed as virtual platforms to support virtual 
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organizations. The computers used in a grid are primarily workstations, servers, clusters, and supercomputers. 

Personal computers, laptops, and PDAs can be used as access devices to a grid system. 

 

The resource sites offer complementary computing resources, including workstations, large servers, a mesh of 

processors, and Linux clusters to satisfy a chain of computational needs. The grid is built across various IP 

broadband networks including LANs and WANs already used by enterprises or organizations over the Internet. The 

grid is presented to users as an integrated resource pool . 

 

Computational grid or data grid providing computing utility, data, and information services through resource sharing 

and cooperation among participating organizations. Courtesy of Z. Xu, Chinese Academy of Science, 2004. Special 

instruments may be involved such as using the radio telescope in SETI@Home search of life in the galaxy and the 

austrophysics@Swineburne for pulsars. At the server end, the grid is a network. At the client end, we see wired or 

wireless terminal devices.The grid integrates the computing, communication, contents, and transactions as rented 

services. Enterprises and consumers form the user base, which then defines the usage trends and service 

characteristics. 

 

Grid Families 

Grid technology demands new distributed computing models, software/middleware support, network 

protocols, and hardware infrastructures. National grid projects are followed by industrial grid platform 

development by IBM, Microsoft, Sun, HP, Dell,Cisco, EMC, Platform Computing, and others. New grid 

service providers (GSPs) and new grid applications have 

 
 

emerged rapidly, similar to the growth of Internet and web services in the past two decades. In grid systems are 

classified in essentially two categories: computational or data grids and P2P grids. Computing or data grids are built 

primarily at the national level. 
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peer-to-peer network families 

An example of a well-established distributed system is the client-server architecture. In this scenario, 

client machines (PCs and workstations) are connected to a central server for compute, e-mail, file access, 

and database applications. The P2P architecture offers a distributed model of networked systems. First, a 

P2P network is client-oriented instead of server-oriented. In this section, P2P systems are introduced at 

the physical level and overlay networks at the logical level. 
P2P Systems 

 

In a P2P system, every node acts as both a client and a server, providing part of the system resources. Peer machines 

are simply client computers connected to the Internet. All client machines act autonomously to join or leave the 

system freely. This implies that no master-slave relationship exists among the peers. No central coordination or 

central database is needed. In other words, no peer machine has a global view of the entire P2P system. The system 

is self-organizing with distributed control. The architecture of a P2P network at two abstraction levels. Initially, the 

peers are totally unrelated. Each peer machine joins or leaves the P2P network voluntarily. Only the participating 

peers form the physical network at any time. Unlike the cluster or grid, a P2P network does not use a dedicated 

interconnection network. the physical network varies in size and topology dynamically due to the free membership 

in the P2P network. 

 

CLOUD COMPUTING OVER THE INTERNET 

 

Gordon Bell, Jim Gray, and Alex Szalay have advocated: ―Computational science is changing to be data-intensive. 

Supercomputers must be balanced systems, not just CPU farms but also petascale I/O and networking arrays.‖ In the 

future, working with large data sets will typically mean sending the computations (programs) to the data, rather than 

copying the data to the workstations. This reflects the trend in IT of moving computing and data from desktops to 

large data centers, where there is on-demand provision of software, hardware, and data as a service. This data 

explosion has promoted the idea of cloud computing. 

 

Cloud computing has been defined differently by many users and designers. For example, IBM, a major player in 

cloud computing, has defined it as follows: ―A cloud is a pool of virtualized computer resources. A cloud can host 

a variety of different work loads, including batch-style backend jobs and interactive and user-facing applications. 

Based on this definition, a cloud allows workloads to be deployed and scaled out quickly through rapid provisioning 

of virtual or physical machines. The cloud supports redundant, self-recovering, highly scalable programming models 

that allow workloads to recover from many unavoidable hardware/software failures. Finally, the cloud system 

should be able to monitor resource use in real time to enable rebalancing of allocations when needed. 

Internet Clouds 
Cloud computing applies a virtualized platform with elastic resources on demand by provisioning hardware, 

software, and data sets dynamically . The idea is to move desktop computing to a service-oriented platform using 

server clusters and huge databases at data centers. Cloud computing leverages its low cost and simplicity to benefit 

both users and providers. Machine virtualization has enabled such cost-effectiveness. Cloud computing intends to 

satisfy many user applications simultaneously. The cloud ecosystem must be designed to be secure, trustworthy, and 

dependable. Some computer users think of the cloud as a centralized resource pool. 
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Others consider the cloud to be a server cluster which practices distributed computing over all the servers 

used. Virtualized resources from data centers to form an Internet cloud, provisioned with hardware, 

software, storage, network, and services for paid users to run their applications. 
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The Cloud Landscape 

 

Traditionally, a distributed computing system tends to be owned and operated by an autonomous administrative 

domain (e.g., a research laboratory or company) for on-premises computing needs. However, these traditional 

systems have encountered several performance bottlenecks: constant system maintenance, poor utilization, and 

increasing costs associated with hardware/software upgrades. Cloud computing as an on-demand computing 

paradigm resolves or relieves us from these problems. It depicts the cloud landscape and major cloud players, based 

on three cloud service models. 
 

 

Three cloud service models in a cloud landscape of major providers. Courtesy of Dennis Gannon,keynote address at 

Cloudcom2010 

• Infrastructure as a Service (IaaS) This model puts together infrastructures demanded by users—namely servers, 

storage, networks, and the data center fabric. The user can deploy and run on multiple VMs running guest OSes on 

specific applications. The user does not manage or control the underlying cloud infrastructure, but can specify when 

to request and release the needed resources. 

• Platform as a Service (PaaS) This model enables the user to deploy user-built applications onto a virtualized 

cloud platform. PaaS includes middleware, databases, development tools, and some runtime support such as Web 

2.0 and Java. The platform includes both hardware and software integrated with specific programming interfaces. 

The provider supplies the API and software tools (e.g., Java, Python, Web 2.0, .NET). The user is freed from 

managing the cloud infrastructure. 

• Software as a Service (SaaS) This refers to browser-initiated application software over thousands of paid cloud 

customers. The SaaS model applies to business processes, industry applications, consumer relationship management 

(CRM), enterprise resources planning (ERP), human resources (HR), and collaborative applications. On the 

customer side, there is no upfront investment in servers or software licensing. On the provider side, costs are rather 

low, compared with conventional hosting of user applications. 

Internet clouds offer four deployment modes: private, public, managed, and hybrid .These modes demand different 

levels of security implications. The different SLAs imply that the security responsibility is shared among all the 

cloud providers, the cloud resource consumers, and the third-party cloud-enabled software providers. Advantages of 

cloud computing have been advocated by many IT experts, industry leaders, and computer science researchers. 

 

The following list highlights eight reasons to adapt the cloud for upgraded Internet applications and web services: 

 

1. Desired location in areas with protected space and higher energy efficiency 

2. Sharing of peak-load capacity among a large pool of users, improving overall utilization 
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3. Separation of infrastructure maintenance duties from domain-specific application development 

4. Significant reduction in cloud computing cost, compared with traditional computing paradigms 

5. Cloud computing programming and application development 

6. Service and data discovery and content/service distribution 

7. Privacy, security, copyright, and reliability issues 

8. Service agreements, business models, and pricing policies 
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SERVICE-ORIENTED ARCHITECTURE (SOA) 

 

In grids/web services, Java, and CORBA, an entity is, respectively, a service, a Java object, and a CORBA 

distributed object in a variety of languages. These architectures build on the traditional seven Open Systems 

Interconnection (OSI) layers that provide the base networking abstractions. On top of this we have a base software 

environment, which would be .NET or Apache Axis for web services, the Java Virtual Machine for Java, and a 

broker network for CORBA. On top of this base environment one would build a higher level environment reflecting 

the special features of the distributed computing environment. This starts with entity interfaces and inter-entity 

communication, which rebuild the top four OSI layers but at the entity and not the bit level. 

 

Layered Architecture for Web Services and Grids 

 

The entity interfaces correspond to the Web Services Description Language (WSDL), Java method, and CORBA 

interface definition language (IDL) specifications in these example distributed systems. These interfaces are linked 

with customized, high-level communication systems: SOAP, RMI, and IIOP in the three examples. These 

communication systems support features including particular message patterns (such as Remote Procedure Call or 

RPC), fault recovery, and specialized routing. Often, these communication systems are built on message-oriented 

middleware (enterprise bus) infrastructure such as WebSphere MQ or Java Message Service (JMS) which provide 

rich functionality and support virtualization of routing, senders, and recipients. 

 

In the case of fault tolerance, the features in the Web Services Reliable Messaging (WSRM) framework mimic the 

OSI layer capability (as in TCP fault tolerance) modified to match the different abstractions (such as messages 

versus packets, virtualized addressing) at the entity levels. Security is a critical capability that either uses or 

reimplements the capabilities seen in concepts such as Internet Protocol Security (IPsec) and secure sockets in the 

OSI layers. 

 

Here, one might get several models with, for example, JNDI (Jini and Java Naming and Directory Interface) 

illustrating different approaches within the Java distributed object model. The CORBA Trading Service, UDDI 

(Universal Description, Discovery, and Integration), LDAP (Lightweight Directory Access Protocol), and ebXML 

(Electronic Business using eXtensible Markup Language) are other examples of discovery and information 

services . Management services include service state and lifetime support; examples include the CORBA Life 

Cycle and Persistent states. 

 

The distributed model is expected to gain popularity as the default approach to software systems. In the earlier years, 

CORBA and Java approaches were used in distributed systems rather than today’s SOAP, XML, or REST 

(Representational State Transfer). 

 

The Evolution of SOA 

service-oriented architecture (SOA) has evolved over the years. SOA applies to building grids, clouds, grids of 

clouds, clouds of grids, clouds of clouds (also known as interclouds), and systems of systems in general. A large 

number of sensors provide data-collection services, denoted as SS (sensor service). A sensor can be a ZigBee 

device, a Bluetooth device, a WiFi access point, a personal computer, a GPA, or a wireless phone, among other 

things. Raw data is collected by sensor services. All the SS devices interact with large or small computers, many 

forms of grids, databases, the compute cloud, the storage cloud, the filter cloud, the discovery cloud, and so on. 

Filter services (fs in the figure) are used to eliminate unwanted raw data, in order to respond to specific requests 

from the web, the grid, or web services. The evolution of SOA: grids of clouds and grids, where ―SS refers to a 

sensor service and ―fs to a filter or transforming service. A collection of filter services forms a filter cloud. 
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Most distributed systems require a web interface or portal. For raw data collected by a large number of sensors to be 

transformed into useful information or knowledge, the data stream may go through a sequence of compute, storage, 

filter, and discovery clouds. 

 

Finally, the inter-service messages converge at the portal, which is accessed by all users. Two example portals, 

OGFCE and HUBzero, are described using both web service (portlet) and Web 2.0 (gadget) technologies. Many 

distributed programming models are also built on top of these basic constructs. 

 

Grids versus Clouds 

 

In all approaches, one is building a collection of services which together tackle all or part of a distributed computing 

problem. In general, a grid system applies static resources, while a cloud emphasizes elastic resources. For some 

researchers, the differences between grids and clouds are limited only in dynamic resource allocation based on 

virtualization and autonomic computing. 

One can build a grid out of multiple clouds. This type of grid can do a better job than a pure cloud, because it can 

explicitly support negotiated resource allocation. Thus one may end up building with a system of systems: such as a 

cloud of clouds, a grid of clouds, or a cloud of grids, or inter-clouds as a basic SOA architecture. 

 
Distributed computing such as Grid computing relies on causing actions to occur on remote computers. Taking 

advantage of remote computers was recognized many years ago well before Grid computing. One of the underlying 

concepts is the client-server model, as shown in the figure below. The client in this context is a software component 

on one computer that makes an access to the server for a particular operation. 

 

1.5 Introduction to Grid Architecture and standards 
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Basic pillars 

Data management 

Resource management 

Security 



 

NARAYANA ENGINEERING COLLEGE::GUDUR                          Prepared By Mr.U.Satyanarayana 

 

Information services 

Need of security 

No centralized control 

Distributed resources 

Different resource providers 

Each resource provider uses different security policies 
Resource Management 

The huge number and the heterogeneous potential of Grid Computing resources causes the resource management 

challenge to be a major effort topic in Grid Computing environments. These resource management eventualities are 

include resource discovery, resource inventories, fault isolation, resource provisioning, resource monitoring, a 

variety of autonomic capabilities and service-level management activities. The most interesting aspect of the 

resource management area is the selection of the correct resource from the grid resource pool, based on the service- 

level requirements then to efficiently provision them to facilitate user needs. 

Information Services 

Information services are fundamentally concentrated on providing valuable information respective to the Grid 

Computing infrastructure resources. These services leverage and entirely depend on the providers of information 

such as resource availability, capacity utilization, just to name a few. This information is valuable and mandatory 

feedback respective to the resources managers. These information services enable service providers to most 

efficiently allocate resources for the variety of very specific tasks related to the Grid Computing infrastructure 

solution. 

Data Management 

Data forms the single most important asset in a Grid Computing system. This data may be input into the 

resource the results from the resource on the execution of a specific task. If the infrastructure is not 

designed properly, the data movement in a geographically distributed system can quickly cause scalability 

problems. It is well understood that the data must be near to the computation where it is used. This data 

movement in any Grid Computing environment requires absolutely secure data transfers, both to and from 

the respective resources. The current advances surrounding data management are tightly focusing on 

virtualized data storage mechanisms, such as storage area networks (SAN), network file systems, 

dedicated storage servers virtual databases. These virtualization mechanisms in data storage solutions and 

common access mechanisms (e.g., relational SQLs, Web services, etc.) help developers and providers to 

design data management concepts into the Grid Computing infrastructure with much more flexibility than 

traditional approaches. 
Web Services and Tools 

Grid Standards 

Standards bodies that are involved in areas related to grid computing include: 

Global Grid Forum (GGF) 

Organization for the Advancement of Structured Information Standards (OASIS) 

World Wide Web Consortium (W3C) 

Distributed Management Task Force (DMTF) 

Web Services Interoperability Organization (WS-I) 
 

OGSA 

The Global Grid Forum has published the Open Grid Service Architecture (OGSA). OGSA defines 

requirements for these core capabilities and thus provides a general reference architecture for grid computing 

environments. It identifies the components and functions that are useful if not required for a grid environment. 

OGSI 

The Global Grid Forum extended the concepts defined in OGSA to define specific interfaces to 

various services that would implement the functions defined by OGSA. A Grid service is a Web service that 

conforms to a set of interfaces and behaviours that define how a client interacts with a Grid service.OGSI provides 

the Web Service Definition Language (WSDL) definitions for these key interfaces. 

OGSA-DAI 

The OGSA-DAI (data access and integration) project is concerned with 

Constructing middleware to assist with access and integration of data from separate data sources via the grid. 

 

GridFTP 
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GridFTP is a secure and reliable data transfer protocol providing high performance and optimized for 

wide-area networks that have high bandwidth. GridFTP uses basic Grid security on both control (command) and 

data channels. Features include multiple data channels for parallel transfers, partial file transfers, third-party 

transfers, and more. 

GridFTP can be used to move files (especially large files) across a network efficiently and reliably. 

WSRF 
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WSRF defines a set of specifications for defining the relationship between Web services and stateful 

resources. WSRF is a general term that encompasses several related proposed standards that cover: 

Resources 

Resource lifetime 

Resource properties 

Service groups (collections of resources) 

Faults 

Notifications 

Topics 

Web services related standards 

Standards commonly associate with Web services are 

XML 

WSDL 

SOAP 

UDDI 

 
Elements of Grid: 

 
Grid computing combines elements such as distributed computing, high-performance computing and disposable 

computing depending on the application of the technology and the scale of operation. Grids can create a virtual 

supercomputer out of the existing servers, workstations and personal computers. 

Present-day grids encompass the following types 
 

->Computational grids, in which machines will set aside resources to “number crunch” data or provide coverage 

for other intensive workloads 

->Scavenging grids, commonly used to find and harvest machine cycles from idle servers and desktop computers 

for use in resource-intensive tasks (scav- enging is usually implemented in a way that is unobtrusive to the 

owner/user of the processor) 

->Data grids, which provide a unified interface for all data repositories in an organization, and through which data 

can be queried, managed and secured. 

->Market-oriented grids, which deal with price setting and negotiation, grid economy management and utility 

driven scheduling and resource allocation. 

The key components of grid computing include the following. 

 

•Resource management: a grid must be aware of what resources are available for different tasks 

•Security management: the grid needs to take care that only authorized users can access and use the available 

resources 

• Data management: data must be transported, cleansed, parceled and processed 

•Services management: users and applications must be able to query the grid in an effective and efficient manner 

 

More specifically, grid computing environment can be viewed as a computing setup constituted by a number of 

logical hierarchical layers. Figure 1 represents these layers. They include grid fabric resources, grid security 

infrastructure, core grid middleware, user level middleware and resource aggregators, grid programming 

environment and tools and grid applications. 

The major constituents of a grid computing system can be identified into 

various categories from different perspectives as follows: 

•functional view 

•physical view 

•service view 

Basic constituents of a grid from a Functional view are decided depending on the grid design and its expected use. 

Some of the functional constituents of a grid are 

1. Security (in the form of grid security infrastructure) 

2. Resource Broker 

3. Scheduler 

4. Data Management 

5. Job and resource management 

6. Resources 
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A resource is an entity that is to be shared [65]; this includes computers, storage, data and software. A resource need 

not be a physical entity. Normally, a grid portal acts as a user interaction mechanism which is application specific 

and can take many forms. A user-security functional block usually exists in the grid environment and is a key 

requirement for grid computing. In a grid environment, there is a need for mechanisms to provide authentication, 

authorization, data confidentiality, data integrity and availability, particulary from a user’s point of view. In the 

case of inter-domain grids, there is also a requirement to support security across organizational boundaries. This 

makes a centrally managed security system impractical. The grid security infrastructure (GSI) provides a “single 

sign-on”, runany where authentication service with support for local control over access rights and mapping from 

global to local identities. 

 

Important questions: 

2- marks 

1. Define grid and cloud computing? 

2. Define HPC and HTC in distributed computing? 

3. What are the three computing paradigms? 

4. Mention any three innovative application of HPC & HTC? 

5. Explain about IoT? 

6. Explain virtual infrastructure? 

7. What the concept of SSI? 

8. Explain about SOA? 

9. Mention any three web services? 

10. How can you define SaaS ? 

10-marks 

1. A) explain architecture of p2p system? 

B) Explain Technologies briefly on network based system? 

2. A) explain GPU programming model in detail? 

B) Discuss briefly on cluster of cooperative computers? 

3. Discuss briefly about Service oriented Architecture? 

4. Explain about cloud services in detail? 
5. How virtual machine work and explain concept of virtualization ? 
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UNIT II 
 

Grid Architecture and Service Modeling 

 

The grid is a meta computing infrastructure that brings together computers (PCs, work stations, server clusters, 

supercomputers, laptops, notebooks, mobile computers, PDAs, etc.) to form a large collection of compute, storage, 

and network resources to solve large-scale computation problems or to enable fast information retrieval by 

registered users or user groups. The coupling between hardware and software with special user applications is 

achieved by leasing the hardware, software, middleware, databases, instruments, and networks as computing 

utilities. Good examples include the renting of expensive special-purpose application software on demand and 

transparent access to human genome databases. 

 

The goal of grid computing is to explore fast solutions for large-scale computing problems. This objective is shared 

by computer clusters and massively parallel processor (MPP) systems . However, grid computing takes advantage of 

the existing computing resources scattered in a nation or internationally around the globe. In grids, resources owned 

by different organizations are aggregated together and shared by many users in collective applications. Grids rely 

heavy use of LAN/WAN resources across enterprises, organizations, and governments. The virtual organizations or 

virtual supercomputers are new concept derived from grid or cloud computing. These are virtual resources 

dynamically configured and are not under the full control of any single user or local administrator. 

 

Grid History and Service Families 

 

Network-based distributed computing becomes more and more popular among the Internet users. Recall that the 

Internet was developed in the 1980s to provide computer-to-computer connections using the telnet:// protocol. The 

web service was developed in the 1990s to establish direct linkage 

e between web pages using the http:// protocol. Ever since the 1990s, grids became gradually available to establish 

large pools of shared resources. The approach is to link many Internet applications across machine platforms directly 

in order to eliminate isolated resource islands. We may invent upgraded protocols in the future like ―grid://‖ and 

―cloud://‖ to realize this dream of a socialized cyberspace with greater resource sharing. 

 

The idea of the grid was pioneered by Ian Foster, Carl Kesselman and Steve Tuecke in a 2001 paper . With is 

ground work, they are often recognized as the fathers of the grids. The Globus Project supported by DARPA has 

promoted the maturity of grid technology with a rich collection of software and middleware tools for grid 

computing. In 2007, the concept of cloud computing was thrown out, which in many ways was extending grid 

computing through virtualized data centers. In this beginning section, we introduce major grid families and review 

the grid service evolution over the past 15 years. 

 

 

Grids differ from conventional HPC clusters. Cluster nodes are more homogeneousmachines that are better 

coordinated to work collectively and cooperatively. The grid nodes are heterogeneous computers that are more 

loosely coupled together over geographically dispersed sites. In 2001, Forbes Magazine advocated the emergence of 

the great global grid (GGG) as a new global infrastructure. This GGG evolved from the World Wide Web (WWW) 

technology we have enjoyed for many years. 

 

Four Grid Service Families 

 

Most of today’s grid systems are called computational grids or data grids. Good examples are the NSF TeraGrid 

installed in the United States and the DataGrid built in the European Union. Information or knowledge grids post 

another grid class dedicated to knowledge management and distributed ontology processing. The Semantic web, also 

known as semantic grids, belongs to this faimly. Ontology platform falls into information or knowledge grids. Other 

information/knowledge grids include the Berkeley BOINC and NASA’s Information Power Grid. 
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In the business world, we see a family, called business grids, built for business data/information processing. These 

are represented by the HP eSpeak, IBM WebSphere, Microsoft .NET, and Sun One systems. Some business grids 

are being transformed into Internet clouds. The last grid class includes several grid extensions such as P2P grids and 

parasitic grids. This will concentrate mainly in computational or data grids. Business grids are only briefly 

introduced. 
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Grid Service Protocol Stack 

 

To put together the resources needed in a grid platform, a layered grid architecture . The top layer corresponds to 

user applications to run on the grid system. The user applications demand collective services including collective 

computing and communications. The next layer is formed by the hardware and software resources aggregated to run 

the user applications under the collective operations. The connectivity layer provides the interconnection among 

drafted resources. This connectivity could be established directly on physical networks or it could be built with 

virtual networking technology. 

 

The layered grid service protocols and their relationship with the Internet service protocols. Courtesy of 

 

Foster, Kesselman, and Tuecke .The connectivity must support the grid fabric, including the network inks and 

virtual private channels. The fabric layer includes all computational resources, storage systems, catalogs, network 

resources, sensors, and their network connections. The connectivity layer enables the exchange of data between 

fabric layer resources. The five-layer grid architecture is closely related to the layered Internet protocol stack . The 

fabric layer corresponds to the link layer in the Internet stack. The connectivity layer is supported by the 

 

 

network and transport layers of the Internet stack. The Internet application layer supports the top three layers. 

 

Grid Resources 

 

It summarizes typical resources that are required to perform grid computing.Many existing protocols (IP, TCP, 

HTTP, FTP, and DNS) or some new communication protocols can be used to route and transfer data. The resource 

layer is responsible for sharing single resources. An interface is needed to claim the static structure and dynamic 

status of local resources. The grid should be able to accept resource requests, negotiate the Quality of Service (QoS), 

and perform the operations specified in user applications. 

 

The collective layer handles the interactions among a collection of resources. This layer implements functions such 

as resource discovery, co-allocation, scheduling, brokering, monitoring, and diagnostics. Other desired features 

include replication, grid-enabled programming, workload management, collaboration, software discovery, access 

authorization, and community accounting and payment. The application layer comprises mainly user applications. 

The applications interact with components in other layers by using well-defined APIs (application programming 

interfaces) and SDKs (software development kits). 

 

CPU Scavenging and Virtual Supercomputers 

 

The process of grid resource aggregation from local and remote sources. Then we link the grid to the concept of 

virtual organizations in a dynamic sense. In fact, the distinction between grids and clouds becomes blurred in recent 

years. Traditionally, grids were formed with allocated resources statically, while clouds were formed with 

provisioned resources dynamically. As virtualization is applicable to grid components, some grids involving data 

centers become more like clouds. 

 

Foster, et al. [15] have compared the grid problem with the anatomy problem in biology. The application users 

expect grids to be designed as flexible, secure, and coordinated resources shared by individuals, institutions, and 

virtual organizations. The grid resources could come from two possible sources. On the one hand, large-scale HPC 

grids can be formed with computers from resource-rich supercomputer centers owned by government agencies and 

research institutions. Alternatively, one could form ―virtual‖ grids, casually, out of a large number of small 

commodity computers owned by ordinary citizens, who volunteer to share their free cycles with other users for a 

noble cause. 

 

CPU Scavenging and Virtual Supercomputers 
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Both public and virtual grids can be built over large or small machines, that are loosely coupled together to satisfy 

the application need. Grids differ from the conventional supercomputers in many ways in the context of distributed 

computing. Supercomputers like 
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MPPs in the Top-500 list are more homogeneously structured with tightly coupled operations, while the grids are 

built with heterogeneous nodes running non-interactive workloads. These grid workloads may involve a large 

number of files and individual users. The geographically dispersed grids are more scalable and fault-tolerant with 

significantly lower operational costs than the supercomputers.The concept of creating a ―grid‖ from the unused 

resources in a network of computers is known as CPU scavenging. In reality, virtual grids are built over large 

number of desktop computers by using their free cycles at night or during inactive usage periods. The donors are 

ordinary citizens on a voluntary participation basis. In practice, these client hosts also donate some disk space, 

RAM, and network bandwidth in addition to the raw CPU cycles. At present, many volunteer computing grids are 

built using the CPU scavenging model. The most famous example is the SETI@Home , which applied over 3 

million computers to achieve 23.37 TFlpos as of Sept. 2001. More recent examples include the BOINC and 

Folding@Home , etc. In practice, these virtual grids can be viewed as virtual supercomputers. 

 

Grid Resource Aggregation 

 

During the resource aggregation process for grids or clouds, several assumptions are made. First, the compute nodes 

and other necessary resources for grids do not join or leave the system incidentally, except when some serious faults 

occur in the grid. Second, cloud resources are mostly provisioned from large data centers. Since security and 

reliability are very tight in these data centers, resource behavior is not predictable. Third, although resources in P2P 

systems are casually allocated, we can build P2P grids for distributed file sharing, content delivery, gaming, and 

entertainment applications. The joining or leaving of some peers has little impact on the needed functions of a P2P 

grid system. 

 

We envision the grid resource aggregation process in a global setting. Hardware, software, database, and network 

resources are denoted by R’s and are scattered all over the world. The availability and specification of these open 

resources is provided by Grid Information Service (GIS) agencies. The grid resource brokers assist users with fees to 

allocate available resources. Multiple brokers could compete to serve users. Also, multiple GISes may overlap in 

their resource coverage. New grid applications are enabled after the coupling of computer databases, instruments, 

and human operators needed in their specific applications. It should be noted that today’s grid computing 

applications are no longer restricted to using HPC systems. HTC systems, like clouds, are even more in demand in 

business services. 

 

Virtual Organization 

 

The grid is a distributed system integrated from shared resources to form a virtual organization(VO). The VO offers 

dynamic cooperation built over multiple physical organizations. The virtual resources contributed by these real 

organizations are managed autonomously. The grid must deal with the trust relationship in a VO. The applications in 

a grid vary in terms of workload and resource demand. A flexible grid system should be designed to 

 

 

adapt to varying workloads. In reality, physical organizations include a real company, a university, or a branch of 

government. These real organizations often share some common objectives. 

For example, several research institutes and hospitals may undertake some joint research challenges together to 

explore a new cancer drug. Another concrete example is the joint venture among IBM, Apple, and Motorola to 

develop PowerPC processors and their supporting software in the past. The joint venture was based on the VO 

model. Grids definitely can promote the concept of VOs. Still, joint ventures demand resources and labor from all 

participants. The following example shows how two VOs or grid configurations can be formed out of three physical 

organizations. 

 

Open Grid Services Architecture (OGSA) 

 

The OGSA is an open source grid service standard jointly developed by academia and the IT industry under 
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coordination of a working group in the Global Grid Forum (GGF). The standard was specifically developed for the 

emerging grid and cloud service communities. The OGSA is extended from web service concepts and technologies. 

The standard defines a common framework that allows businesses to build grid platforms across enterprises and 

business partners. The intent is to define the standards required for both open source and commercial software to 

support a global grid infrastructure. 

 

OGSA Framework 
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The OGSA was built on two basic software technologies: the Globus Toolkit widely adopted as a grid technology 

solution for scientific and technical computing, and web services (WS 2.0) as a popular standards-based framework 

for business and network applications. The OGSA is intended to support the creation, termination, management, and 

invocation of stateful, transient grid services via standard interfaces and conventions . The OGSA framework 

specifies the physical environment, security, infrastructure profile, resource provisioning, virtual domains, and 

execution environment for various grid services and API access tools. 

 

A service is an entity that provides some capability to its client by exchanging messages. We feel that greater 

flexibility is needed in grid service discovery and management. The service-oriented architecture (SOA) presented 

serves as the foundation of grid computing services. The individual and collective states of resources are specified in 

this service standard. The standard also specifies interactions between these services within the particular SOA for 

grids. An important point is that the architecture is not layered, where the implementation of one service is built 

upon modules that are logically dependent. One may classify this framework as object-oriented. Many web service 

standards, semantics, and extensions are applied or modified in the OGSA. 

 

OGSA Interfaces 

 

 

The OGSA is centered on grid services. These services demand special well-defined application interfaces. These 

interfaces provide resource discovery, dynamic service creation, lifetime management, notification, and 

manageability. The conventions must address naming and upgradeability. The interfaces proposed by the OGSA 

working group. While the OGSA defines a variety of behaviors and associated interfaces, all but one of these 

interfaces (the grid service) is optional. Two key properties of a grid service are transience and statefulness. These 

properties have significant implications regarding how a grid service is named, discovered, and managed. Being 

transient means the service can be created and destroyed dynamically; statefulness refers to the fact that one can 

distinguish one service instance from another. 

 

OGSA Grid Service Interfaces Developed by the OGSA Working Group 

 

Grid Service Handle 

 

A GSH is a globally unique name that distinguishes a specific grid service instance from all others. The status of a 

grid service instance could be that it exists now or that it will exist in the future. These instances carry no protocol or 

instance-specific addresses or supported protocol bindings. Instead, these information items are encapsulated along 

with all other instance-specific information. In order to interact with a specific service instance, a single abstraction 

is defined as a GSR. Unlike a GSH, which is time-invariant, the GSR for an instance can change over the lifetime of 

the service. The OGSA employs a ―handle-resolution‖ mechanism for mapping from a GSH to a GSR. The GSH 

must be globally defined for a particular instance. However, the GSH may not always refer to the same network 

address. A service instance may be implemented in its own way, as long as it obeys the associated semantics. For 

example, the port type on which the service instance was implemented decides which operation to perform . 

 

Grid Service Migration 

 

This is a mechanism for creating new services and specifying assertions regarding the lifetime of a service. The 

OGSA model defines a standard interface, known as a factor, to implement this reference. Any service that is 

created must address the former services as the reference of later services. The factory interface is labeled as a 

Create Service operation . This creates a requested grid service with a specified interface and returns the GSH and 

initial GSR for the new service instance. It should also register the new service instance with a handle resolution 

service. Each dynamically created grid service instance is associated with a specified lifetime. 

 

Grid Service Migration Using GSH and GSR shows how a service instance may migrate from one location to 

another during execution. A GSH resolves to a different GSR for a migrated service instance before (on the left) and 
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after (on the right) the migration at time T. The handle resolver simply returns different GSRs before and after the 

migration. The initial lifetime can be 

 

 

extended by a specified time period by explicitly requesting the client or another grid service acting on the client’s 

behalf. 
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A GSH resolving to a different GSR for a migrated service instance before (shown on the left) and after (on the 

right) the migration at time T. If the time period expires without having received a reaffirmed interest from a client, 

the service instance can be terminated on its own and release the associated resources accordingly. The lifetime 

management enables robust termination and failure detection. This is done by clearly defining the lifetime semantics 

of a service instance. Similarly, a hosting environment is guaranteed to consume bounded resources under some 

system failures. If the termination time of a service is reached, the hosting environment can reclaim all resources 

allocated. 

 

OGSA Security Models 

 

The OGSA supports security enforcement at various levels. The grid works in a heterogeneous distributed 

environment, which is essentially open to the general public. We must be able to detect intrusions or stop viruses 

from spreading by implementing secure conversations, single logon, access control, and auditing for nonrepudiation. 

At the security policy and user levels, we want to apply a service or endpoint policy, resource mapping rules, 

authorized access of critical resources, and privacy protection. At the Public Key Infrastructure (PKI) service level, 

the OGSA demands security binding with the security protocol stack and bridging of certificate authorities (CAs), 

use of multiple trusted intermediaries, and so on. Trust models and secure logging are often practiced in grid 

platforms. 

 

The OGSA security model implemented at various protection levels. Courtesy of I. Foster, et al., 

http://www.ogf.org/documents/GFD.80.pdf 

 

DATA-INTENSIVE GRID SERVICE MODELS 

 

Applications in the grid are normally grouped into two categories: computation-intensive and data-intensive. For 

data-intensive applications, we may have to deal with massive amounts of data. For example, the data produced 

annually by a Large Hadron Collider may exceed several petabytes (1015 bytes). The grid system must be specially 

designed to discover, transfer, and manipulate these massive data sets. Transferring massive data sets is a time- 

consuming task. Efficient data management deman ds low-cost storage and high-speed data movement. Listed in the 

following paragraphs are several common methods for solving data movement problems. 

 

Data Replication and Unified Namespace 

 

This data access method is also known as caching, which is often applied to enhance data efficiency in a grid 

environment. By replicating the same data blocks and scattering them in multiple regions of a grid, users can access 

the same data with locality of references. 

 

 

Furthermore, the replicas of the same data set can be a backup for one another. Some key data will not be lost in 

case of failures. However, data replication may demand periodic consistency checks. The increase in storage 

requirements and network bandwidth may cause additional problems. Replication strategies determine when and 

where to create a replica of the data. The factors to consider include data demand, network conditions, and transfer 

cost. The strategies of replication can be classified into method types: dynamic and static. For the static method, the 

locations and number of replicas are determined in advance and will not be modified. Although replication 

operations require little overhead, static strategies cannot adapt to changes in demand, bandwidth, and storage 

vailability. Dynamic strategies can adjust locations and number of data replicas according to changes inconditions 

(e.g., user behavior). However, frequent data-moving operations can result in much more overhead than in static 

strategies. The replication strategy must be optimized with respect to the status of data replicas. For static 

replication, optimization is required to determine the location and number of data replicas. For dynamic replication, 

optimization may be determined based on whether the data replica is being created, deleted, or moved. The most 

common replication strategies include preserving locality, minimizing update costs, and maximizing profits. 

 

http://www.ogf.org/documents/GFD.80.pdf
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Grid Data Access Models 

 

Multiple participants may want to share the same data collection. To retrieve any piece of data, we need a grid with 

a unique global namespace. Similarly, we desire to have unique file names. To achieve these, we have to resolve 

inconsistencies among multiple data objects bearing the same name. Access restrictions may be imposed to avoid 

confusion. Also, data needs to be protected to avoid leakage and damage. Users who want to access data have to be 
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authenticated first and then authorized for access. In general, there are four access models for organizing a data grid, 

as listed here and shown in Figure 7.5. 

 

Four architectural models for building a data grid. 

 

Monadic model: This is a centralized data repository model. All the data is saved in a central data repository. When 

users want to access some data they have to submit requests directly to the central repository. No data is replicated 

for preserving data locality. This model is the simplest to implement for a small grid. For a large grid, this model is 

not efficient in terms of performance and reliability. Data replication is permitted in this model only when fault 

tolerance is demanded. 

 

Hierarchical model: The hierarchical model, is suitable for building a large data grid which has only one large data 

access directory. The data may be transferred from the source to a second-level center. Then some data in the 

regional center is transferred to the third-level center. After being forwarded several times, specific data objects are 

accessed directly by users. Generally speaking, a higher-level data center has a wider coverage area. It provides 

higher bandwidth for access than a lower-level data center. PKI security services are easier to implement in this 

hierarchical data access model. The European Data Grid (EDG) adopts this data access model. 

 

 

Federation model: This data access model is better suited for designing a data grid with multiple sources of data 

supplies. Sometimes this model is also known as a mesh model. The data sources are distributed to many different 

locations. Although the data is shared, the data items are still owned and controlled by their original owners. 

According to predefined access policies, only authenticated users are authorized to request data from any data 

source. This mesh model may cost the most when the number of grid institutions becomes very large. 

 

Hybrid model: This is data access model . The model combines the best features of the hierarchical and mesh 

models. Traditional data transfer technology, such as FTP, applies for networks with lower bandwidth. Network 

links in a data grid often have fairly high bandwidth, and other data transfer models are exploited by high-speed data 

transfer tools such as GridFTP developed with the Globus library. The cost of the hybrid model can be traded off 

between the two extreme models for hierarchical and mesh-connected grids. 

 

Overview of Grid’5000 located at nine resource sites in France. 

 

Parallel versus Striped Data Transfers 

 

Compared with traditional FTP data transfer, parallel data transfer opens multiple data streams for passing 

subdivided segments of a file simultaneously. Although the speed of each stream is the same as in sequential 

streaming, the total time to move data in all streams can be significantly reduced compared to FTP transfer. In 

striped data transfer, a data object is partitioned into a number of sections, and each section is placed in an individual 

site in a data grid. When a user requests this piece of data, a data stream is created for each site, and all the sections 

of data objects are transferred simultaneously. Striped data transfer can utilize the bandwidths of multiple sites more 

efficiently to speed up data transfer. 

 

Grid Projects and Grid Systems Built 

 

Grid computing provides promising solutions to contemporary users who want to effectively share and collaborate 

with one another in distributed and self-governing environments. Apart from volunteer grids, most large-scale grids 

are national or international projects funded by public agencies. This section reviews the major grid systems 

developed in recent years. In particular, we describe three national grid projects that have been installed in the U.S., 

EU, and China. 

 

National Grids and International Projects 
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Like supercomputers, national grids are mainly funded through government sources.These national grids are 

developed to promote research discovery, middleware products, and utility computing in grid-enabled applications. 

 

National Grid Projects 
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Over the past decade, many data, information, or computational grids were built in various parts of the world. It 

summarizes five representative grid computing systems built in the United States, European Union, United 

Kingdom, France, and China. We call these national grids, because they are essentially government-funded projects 

pushing for grand challenge applications that demand high-performance computing and high-bandwidth 

communication networks. Here treat the EU countries as a single entity. 

 

Most national grids are built by linking supercomputer centers and major computer ensembles together with Internet 

backbones and high-bandwidth WANs or LANs. More details can be found in the cited subsequent sections. 

 

International Grid Projects 

 

Grid applications cannot be restricted to geographical boundaries. As summarized , several global-scale grid projects 

were launched or are still active in use today. These projects promote volunteer computing, utility computing, and 

specific software applications that utilizes grid infrastructure. International grids involve both government and 

industrial funding. The European Union has been a major player in grid computing. The most famous EU grid 

projects are the EGEE, DataGrid, and BEinGrid. In the industrial sector, we have seen grid providers including Sun 

Microsystems, IBM, HP, etc. International grids are built with fix-term projects. Some of them are no longer active 

to provide public services at the end of funding. 

 

UNIT III 

 

CLOUD COMPUTING AND SERVICE MODELS 

 

Over the past two decades, the world economy has rapidly moved from manufacturing to more service-oriented. In 

2010, 80 percent of the U.S. economy was driven by the service industry, leaving only 15 percent in manufacturing 

and 5 percent in agriculture and other areas. Cloud computing benefits the service industry most and advances 

business computing with a new paradigm. In 2009, the global cloud service marketplace reached $17.4 billion. IDC 

predicted in 2010 that the cloud-based economy may increase to $44.2 billion by 2013. Developers of innovative 

cloud applications no longer acquire large capital equipment in advance. They just rent the resources from some 

large data centers that have been automated for this purpose. 

 

Users can access and deploy cloud applications from anywhere in the world at very competitive costs. Virtualized 

cloud platforms are often built on top of large data centers. With that in mind, we examine first the server cluster in 

a data center and its interconnection issues. In other words, clouds aim to power the next generation of data centers 

by architecting them as virtual resources over automated hardware, databases, user interfaces, and application 

environments. In this sense, clouds grow out of the desire to build better data centers through automated resource 

provisioning. 

 

 

Public, Private, and Hybrid Clouds 

 

The concept of cloud computing has evolved from cluster, grid, and utility computing. Cluster and grid computing 

leverage the use of many computers in parallel to solve problems of any size. Utility and Software as a Service 

(SaaS) provide computing resources as a service with the notion of pay per use. Cloud computing leverages dynamic 

resources to deliver large numbers of services to end users. Cloud computing is a high-throughput computing (HTC) 

paradigm whereby the infrastructure provides the services through a large data center or server farms. The cloud 

computing model enables users to share access to resources from anywhere at any time through their connected 

devices. 

 

In this scenario, the computations (programs) are sent to where the data is located, rather than copying the data to 

millions of desktops as in the traditional approach. Cloud computing avoids large data movement, resulting in much 

better network bandwidth utilization. Furthermore, machine virtualization has enhanced resource utilization, 

increased application flexibility, and reduced the total cost of using virtualized data-center resources. The cloud 
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offers significant benefit to IT companies by freeing them from the low-level task of setting up the hardware 

(servers) and managing the system software. Cloud computing applies a virtual platform with elastic resources put 

together by on-demand provisioning of hardware, software, and data sets, dynamically. The main idea is to move 

desktop computing to a service-oriented platform using server clusters and huge databases at data centers. Cloud 

computing leverages its low cost and simplicity to both providers and users. According to Ian Foster, cloud 
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computing intends to leverage multitasking to achieve higher throughput by serving many heterogeneous 

applications, large or small, simultaneously. 

 

Public Clouds 

 

A public cloud is built over the Internet and can be accessed by any user who has paid for the service. Public clouds 

are owned by service providers and are accessible through a subscription. The callout box in top of the architecture 

of a typical public cloud. Many public clouds are available, including Google App Engine (GAE), Amazon Web 

Services (AWS), Microsoft Azure, IBM Blue Cloud, and Salesforce.com’s Force.com. The providers of the 

aforementioned clouds are commercial providers that offer a publicly accessible remote interface for creating and 

managing VM instances within their proprietary infrastructure. A public cloud delivers a selected set of business 

processes. The application and infrastructure services are offered on a flexible price-per-use basis. 

 

Private Clouds 

 

A private cloud is built within the domain of an intranet owned by a single organization. Therefore, it is client 

owned and managed, and its access is limited to the owning clients and their partners. Its deployment was not meant 

to sell capacity over the Internet through publicly accessible interfaces. Private clouds give local users a flexible and 

agile private infrastructure to 

 

 

run service workloads within their administrative domains. A private cloud is supposed to deliver more efficient and 

convenient cloud services. It may impact the cloud standardization, while retaining greater customization and 

organizational control. 

 

Hybrid Clouds 

 

A hybrid cloud is built with both public and private clouds, Private clouds can also support a hybrid cloud model by 

supplementing local infrastructure with computing capacity from an external public cloud. For example, the 

Research Compute Cloud (RC2) is a private cloud, built by IBM, that interconnects the computing and IT resources 

at eight IBM Research Centers scattered throughout the United States, Europe, and Asia. A hybrid cloud provides 

access to clients, the partner network, and third parties. In summary, public clouds promote standardization, preserve 

capital investment, and offer application flexibility. Private clouds attempt to achieve customization and offer higher 

efficiency, resiliency, security, and privacy. Hybrid clouds operate in the middle, with many compromises in terms 

of resource sharing. 

 

Infrastructure-as-a-Service (IaaS) 

 

Cloud computing delivers infrastructure, platform, and software (application) as services, which are made available 

as subscription-based services in a pay-as-you-go model to consumers. The services provided over the cloud can be 

generally categorized into three different service models: namely IaaS, Platform as a Service (PaaS), and Software 

as a Service (SaaS). These form the three pillars on top of which cloud computing solutions are delivered to end 

users. All three models allow users to access services over the Internet, relying entirely on the infrastructures of 

cloud service providers. 

 

These models are offered based on various SLAs between providers and users. In a broad sense, the SLA for cloud 

computing is addressed in terms of service availability, performance, and data protection and security. The three 

cloud models at different service levels of the cloud. SaaS is applied at the application end using special interfaces 

by users or clients. At the PaaS layer, the cloud platform must perform billing services and handle job queuing, 

launching, and monitoring services. At the bottom layer of the IaaS services, databases, compute instances, the file 

system, and storage must be provisioned to satisfy user demands. The IaaS, PaaS, and SaaS cloud service models at 

different service levels. 
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Infrastructure as a Service 

 

This model allows users to use virtualized IT resources for computing, storage, and networking. In short, the service 

is performed by rented cloud infrastructure. The user can deploy and run his applications over his chosen OS 

environment. The user does not manage or control the underlying cloud infrastructure, but has control over the OS, 
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storage, deployed applications, and possibly select networking components. This IaaS model encompasses storage 

as a service, compute instances as a service, and communication as a service. The Virtual Private Cloud 

 

 

(VPC) in Example 4.1 shows how to provide Amazon EC2 clusters and S3 storage to multiple users. Many startup 

cloud providers have appeared in recent years. GoGrid, FlexiScale, and Aneka are good examples. It summarizes the 

IaaS offerings by five public cloud providers. Interested readers can visit the companies’ web sites for updated 

information. 

 

Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) 

 

In this section, we will introduce the PaaS and SaaS models for cloud computing. SaaS is often built on top of the 

PaaS, which is in turn built on top of the IaaS. 

Platform as a Service (PaaS) 

 

To be able to develop, deploy, and manage the execution of applications using provisioned resources demands a 

cloud platform with the proper software environment. Such a platform includes operating system and runtime library 

support. This has triggered the creation of the PaaS model to enable users to develop and deploy their user 

applications. It highlights cloud platform services offered by five PaaS services. 

 

Software as a Service (SaaS) 

 

This refers to browser-initiated application software over thousands of cloud customers. Services and tools offered 

by PaaS are utilized in construction of applications and management of their deployment on resources offered by 

IaaS providers. The SaaS model provides software applications as a service. As a result, on the customer side, there 

is no upfront investment in servers or software licensing. On the provider side, costs are kept rather low, compared 

with conventional hosting of user applications. Customer data is stored in the cloud that is either vendor proprietary 

or publicly hosted to support PaaS and IaaS.The best examples of SaaS services include Google Gmail and docs, 

Microsoft SharePoint, and the CRM software from Salesforce.com. They are all very successful in promoting their 

own business or are used by thousands of small businesses in their day-to-day operations. Providers such as Google 

and Microsoft offer integrated IaaS and PaaS services, whereas others such as Amazon and GoGrid offer pure IaaS 

services and expect third-party PaaS providers such as Manjrasoft to offer application development and deployment 

services on top of their infrastructure services. To identify important cloud applications in enterprises, the success 

stories of three real-life cloud applications for HTC, news media, and business transactions. The benefits of using 

cloud services are evident in these SaaS applications. 

 

IMPLEMENTATION LEVELS OF VIRTUALIZATION 

 

Virtualization is a computer architecture technology by which multiple virtual machines (VMs) are multiplexed in 

the same hardware machine. The idea of VMs can be dated back to the 1960s [53]. The purpose of a VM is to 

enhance resource sharing by many users and improve computer performance in terms of resource utilization and 

application flexibility. Hardware resources 

 

 

(CPU, memory, I/O devices, etc.) or software resources (operating system and software libraries) can be virtualized 

in various functional layers. This virtualization technology has been revitalized as the demand for distributed and 

cloud computing increased sharply in recent years . 

 

The idea is to separate the hardware from the software to yield better system efficiency. For example, computer 

users gained access to much enlarged memory space when the concept of virtual memory was introduced. Similarly, 

virtualization techniques can be applied to enhance the use of compute engines, networks, and storage. According to 
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a 2009 Gartner Report, virtualization was the top strategic technology poised to change the computer industry. With 

sufficient storage, any computer platform can be installed in another host computer, even if they use processors with 

different instruction sets and run with distinct operating systems on the same hardware. 

 

Levels of Virtualization Implementation 
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A traditional computer runs with a host operating system specially tailored for its hardware architecture. After 

virtualization, different user applications managed by their own operating systems (guest OS) can run on the same 

hardware, independent of the host OS. This is often done by adding additional software, called a virtualization layer 

. This virtualization layer is known as hypervisor or virtual machine monitor (VMM) . The VMs are shown in the 

upper boxes, where applications run with their own guest OS over the virtualized CPU, memory, and I/O resources. 

The architecture of a computer system before and after virtualization, where VMM stands for virtual machine 

monitor. 

 

The main function of the software layer for virtualization is to virtualize the physical hardware of a host machine 

into virtual resources to be used by the VMs, exclusively. This can be implemented at various operational levels, as 

we will discuss shortly. The virtualization software creates the abstraction of VMs by interposing a virtualization 

layer at various levels of a computer system. Common virtualization layers include the instruction set architecture 

(ISA) level, hardware level, operating system level, library support level, and application level. Virtualization 

ranging from hardware to applications in five abstraction levels. 

 

Instruction Set Architecture Level 

 

At the ISA level, virtualization is performed by emulating a given ISA by the ISA of the host machine. For example, 

MIPS binary code can run on an x86-based host machine with the help of ISA emulation. With this approach, it is 

possible to run a large amount of legacy binary code written for various processors on any given new hardware host 

machine. Instruction set emulation leads to virtual ISAs created on any hardware machine. The basic emulation 

method is through code interpretation. An interpreter program interprets the source instructions to target instructions 

one by one. One source instruction may require tens or hundreds of native target instructions to perform its function. 

Obviously, this process is relatively slow. For better performance, dynamic binary translation is desired. This 

approach 

 

 

translates basic blocks of dynamic source instructions to target instructions. The basic blocks can also be extended to 

program traces or super blocks to increase translation efficiency. Instruction set emulation requires binary translation 

and optimization. A virtual instruction set architecture (V-ISA) thus requires adding a processor-specific software 

translation layer to the compiler. 

 

Hardware Abstraction Level 

 

Hardware-level virtualization is performed right on top of the bare hardware. On the one hand, this approach 

generates a virtual hardware environment for a VM. On the other hand, the process manages the underlying 

hardware through virtualization. The idea is to virtualize a computer’s resources, such as its processors, memory, 

and I/O devices. The intention is to upgrade the hardware utilization rate by multiple users concurrently. The idea 

was implemented in the IBM VM/370 in the 1960s. More recently, the Xen hypervisor has been applied to virtualize 

x86-based machines to run Linux or other guest OS applications. 

 

Operating System Level 

 

This refers to an abstraction layer between traditional OS and user applications. OS-level virtualization creates 

isolated containers on a single physical server and the OS instances to utilize the hardware and software in data 

centers. The containers behave like real servers. OS-level virtualization is commonly used in creating virtual hosting 

environments to allocate hardware resources among a large number of mutually distrusting users. It is also used, to a 

lesser extent, in consolidating server hardware by moving services on separate hosts into containers or VMs on one 

server. OS-level virtualization is depicted . 

 

Library Support Level 

 

Most applications use APIs exported by user-level libraries rather than using lengthy system calls by the OS. Since 
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most systems provide well-documented APIs, such an interface becomes another candidate for virtualization. 

Virtualization with library interfaces is possible by controlling the communication link between applications and the 

rest of a system through API hooks. The software tool WINE has implemented this approach to support Windows 

applications on top of UNIX hosts. Another example is 
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the vCUDA which allows applications executing within VMs to leverage GPU hardware acceleration. This approach 

is detailed . 

 

User-Application Level 

 

Virtualization at the application level virtualizes an application as a VM. On a traditional OS, an application often 

runs as a process. Therefore, application-level virtualization is also known as process-level virtualization. The most 

popular approach is to deploy high level language (HLL) VMs. In this scenario, the virtualization layer sits as an 

application program on top of the 

 

 

operating system, and the layer exports an abstraction of a VM that can run programs written and compiled to a 

particular abstract machine definition. Any program written in the HLL and compiled for this VM will be able to run 

on it. The Microsoft .NET CLR and Java Virtual Machine (JVM) are two good examples of this class of VM. 

 

Other forms of application-level virtualization are known as application isolation, application sandboxing, or 

application streaming. The process involves wrapping the application in a layer that is isolated from the host OS and 

other applications. The result is an application that is much easier to distribute and remove from user workstations. 

An example is the LANDesk application virtualization platform which deploys software applications as self- 

contained, executable files in an isolated environment without requiring installation, system modifications, or 

elevated security privileges. 

 

Relative Merits of Different Approaches 

 

Compares the relative merits of implementing virtualization at various levels.The column headings correspond to 

four technical merits. ―Higher Performance‖ and ―Application Flexibility‖ are self-explanatory. ―Implementation 

Complexity‖ implies the cost to implement that particular virtualization level. ―Application Isolation‖ refers to the 

effort required to isolate resources committed to different VMs. Each row corresponds to a particular level of 

virtualization. 

 

Relative Merits of Virtualization at Various Levels (More ―X‖’s Means Higher Merit, with a Maximum of 5 X’s) 

 

The number of X’s in the table cells reflects the advantage points of each implementation level. Five X’s implies the 

best case and one X implies the worst case. Overall, hardware and OS support will yield the highest performance. 

However, the hardware and application levels are also the most expensive to implement. User isolation is the most 

difficult to achieve. ISA implementation offers the best application flexibility. 

 

VMM Design Requirements and Providers 

 

As mentioned earlier, hardware-level virtualization inserts a layer between real hardware and traditional operating 

systems. This layer is commonly called the Virtual Machine Monitor (VMM) and it manages the hardware resources 

of a computing system. Each time programs access the hardware the VMM captures the process. In this sense, the 

VMM acts as a traditional OS. One hardware component, such as the CPU, can be virtualized as several virtual 

copies. Therefore, several traditional operating systems which are the same or different can sit on the same set of 

hardware simultaneously. 

 

There are three requirements for a VMM. First, a VMM should provide an environment for programs which is 

essentially identical to the original machine. Second, programs run in this 

 

 

environment should show, at worst, only minor decreases in speed. Third, a VMM should be in complete control of 

the system resources. Any program run under a VMM should exhibit a function identical to that which it runs on the 
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original machine directly. Two possible exceptions in terms of differences are permitted with this requirement: 

differences caused by the availability of system resources and differences caused by timing dependencies. The 

former arises when more than one VM is running on the same machine. 

 

The hardware resource requirements, such as memory, of each VM are reduced, but the sum of them is greater than 

that of the real machine installed. The latter qualification is required because of the intervening level of software and 

the effect of any other VMs concurrently existing on the same hardware. Obviously, these two differences pertain to 
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performance, while the function a VMM provides stays the same as that of a real machine. However, the identical 

environment requirement excludes the behavior of the usual time-sharing operating system from being classed as a 

VMM. 

 

A VMM should demonstrate efficiency in using the VMs. Compared with a physical machine, no one prefers a 

VMM if its efficiency is too low. Traditional emulators and complete software interpreters (simulators) emulate 

each instruction by means of functions or macros. Such a method provides the most flexible solutions for VMMs. 

 

However, emulators or simulators are too slow to be used as real machines. To guarantee the efficiency of a VMM, 

a statistically dominant subset of the virtual processor’s instructions needs to be executed directly by the real 

processor, with no software intervention by the VMM , compares four hypervisors and VMMs that are in use today. 

 

Comparison of Four VMM and Hypervisor Software Packages Complete control of these resources by a VMM 

includes the following aspects: 

 

(1) The VMM is responsible for allocating hardware resources for programs; 

 

(2) it is not possible for a program to access any resource not explicitly allocated to it; and 

 

(3) it is possible under certain circumstances for a VMM to regain control of resources already allocated. Not all 

processors satisfy these requirements for a VMM. A VMM is tightly related to the architectures of processors. It is 

difficult to implement a VMM for some types of processors, such as the x86. Specific limitations include the 

inability to trap on some privileged instructions. If a processor is not designed to support virtualization primarily, it 

is necessary to modify the hardware to satisfy the three requirements for a VMM. This is known as hardware- 

assisted virtualization. 

 

Virtualization Support at the OS Level 

 

With the help of VM technology, a new computing mode known as cloud computing is emerging. Cloud computing 

is transforming the computing landscape by shifting the hardware 

 

 

and staffing costs of managing a computational center to third parties, just like banks. However, cloud computing 

has at least two challenges. The first is the ability to use a variable number of physical machines and VM instances 

depending on the needs of a problem. For example, a task may need only a single CPU during some phases of 

execution but may need hundreds of CPUs at other times. The second challenge concerns the slow operation of 

instantiating new VMs. Currently, new VMs originate either as fresh boots or as replicates of a template VM, 

unaware of the current application state. Therefore, to better support cloud computing, a large amount of research 

and development should be done. 

 

Why OS-Level Virtualization? 

 

As mentioned earlier, it is slow to initialize a hardware-level VM because each VM creates its own image from 

scratch. In a cloud computing environment, perhaps thousands of VMs need to be initialized simultaneously. 

Besides slow operation, storing the VM images also becomes an issue. As a matter of fact, there is considerable 

repeated content among VM images. Moreover, full virtualization at the hardware level also has the disadvantages 

of slow performance and low density, and the need for para-virtualization to modify the guest OS. To reduce the 

performance overhead of hardware-level virtualization, even hardware modification is needed. OS-level 

virtualization provides a feasible solution for these hardware-level virtualization issues. Operating system 

virtualization inserts a virtualization layer inside an operating system to partition a machine’s physical resources. It 

enables multiple isolated VMs within a single operating system kernel. This kind of VM is often called a virtual 

execution environment (VE), Virtual Private System (VPS), or simply container. From the user’s point of view, VEs 

look like real servers. This means a VE has its own set of processes, file system, user accounts, network interfaces 
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with IP addresses, routing tables, firewall rules, and other personal settings. Although VEs can be customized for 

different people, they share the same operating system kernel. Therefore, OS-level virtualization is also called 

single-OS image virtualization which illustrates operating system virtualization from the point of view of a machine 

stack. 
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The OpenVZ virtualization layer inside the host OS, which provides some OS images to create VMs quickly. 

Courtesy of OpenVZ User’s Guide 

 

Advantages of OS Extensions 

 

Compared to hardware-level virtualization, the benefits of OS extensions are twofold: 

 

(1) VMs at the operating system level have minimal startup/shutdown costs, low resource requirements, and high 

scalability; and 

 

(2) for an OS-level VM, it is possible for a VM and its host environment to synchronize state changes when 

necessary. These benefits can be achieved via two mechanisms of OS-level virtualization: 

 

 

(1) All OS-level VMs on the same physical machine share a single operating system kernel; and 

 

(2) the virtualization layer can be designed in a way that allows processes in VMs to access as many resources of the 

host machine as possible, but never to modify them. In cloud computing, the first and second benefits can be used to 

overcome the defects of slow initialization of VMs at the hardware level, and being unaware of the current 

application state, respectively. 

 

Disadvantages of OS Extensions 

 

The main disadvantage of OS extensions is that all the VMs at operating system level on a single container must 

have the same kind of guest operating system. That is, although different OS-level VMs may have different 

operating system distributions, they must pertain to the same operating system family. For example, a Windows 

distribution such as Windows XP cannot run on a Linux-based container. However, users of cloud computing have 

various preferences. Some prefer Windows and others prefer Linux or other operating systems. Therefore, there is a 

challenge for OS-level virtualization in such cases illustrates the concept of OS-level virtualization. The 

virtualization layer is inserted inside the OS to partition the hardware resources for multiple VMs to run their 

applications in multiple virtual environments. To implement OS-level virtualization, isolated execution 

environments (VMs) should be created based on a single OS kernel. Furthermore, the access requests from a VM 

need to be redirected to the VM’s local resource partition on the physical machine. For example, the chroot 

command in a UNIX system can create several virtual root directories within a host OS. These virtual root 

directories are the root directories of all VMs created. 

 

There are two ways to implement virtual root directories: duplicating common resources to each VM partition; or 

sharing most resources with the host environment and only creating private resource copies on the VM on demand. 

The first way incurs significant resource costs and overhead on a physical machine. This issue neutralizes the 

benefits of OS-level virtualization, compared with hardware-assisted virtualization. 

 

Therefore, OS-level virtualization is often a second choice. 

 

Virtualization on Linux or Windows Platforms 

 

By far, most reported OS-level virtualization systems are Linux-based. Virtualization support on the Windows-based 

platform is still in the research stage. The Linux kernel offers an abstraction layer to allow software processes to 

work with and operate on resources without knowing the hardware details. New hardware may need a new Linux 

kernel to support. Therefore, different Linux platforms use patched kernels to provide special support for extended 

functionality. 

 

However, most Linux platforms are not tied to a special kernel. In such a case, a host can run several VMs 

simultaneously on the same hardware, summarizes several examples of OS-level 
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virtualization tools that have been developed in recent years. Two OS tools (Linux vServer and OpenVZ) support 

Linux platforms to run other platform-based applications through virtualization. These two OS-level tools are 

illustrated in 
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The third tool, FVM, is an attempt specifically developed for virtualization on the Windows NT platform. 

Virtualization Support for Linux and Windows NT Platforms Uses system call interfaces to create VMs at the NY 

kernel space; multiple VMs are supported by virtualized namespace and copy-on-write. 

 

Middleware Support for Virtualization 

 

Library-level virtualization is also known as user-level Application Binary Interface (ABI) or API emulation. This 

type of virtualization can create execution environments for running alien programs on a platform rather than 

creating a VM to run the entire operating system. API call interception and remapping are the key functions 

performed. This section provides an overview of several library-level virtualization systems: namely the Windows 

Application Binary Interface (WABI), lxrun, WINE, Visual MainWin, and vCUDA. 

 

VIRTUALIZATION STRUCTURES/TOOLS AND MECHANISMS 

 

In general, there are three typical classes of VM architecture showed the architectures of a machine before and after 

virtualization. Before virtualization, the operating system manages the hardware. After virtualization, a 

virtualization layer is inserted between the hardware and the operating system. In such a case, the virtualization layer 

is responsible for converting portions of the real hardware into virtual hardware. Therefore, different operating 

systems such as Linux and Windows can run on the same physical machine, simultaneously. Depending on the 

position of the virtualization layer, there are several classes of VM architectures, namely the hypervisor architecture, 

para-virtualization, and host-based virtualization. The hypervisor is also known as the VMM (Virtual Machine 

Monitor). They both perform the same virtualization operations. 

 

Hypervisor and Xen Architecture 

 

The hypervisor supports hardware-level virtualization on bare metal devices like CPU, memory, disk and network 

interfaces. The hypervisor software sits directly between the physical hardware and its OS. This virtualization layer 

is referred to as either the VMM or the hypervisor. The hypervisor provides hypercalls for the guest OSes and 

applications. Depending on the functionality, a hypervisor can assume a micro-kernel architecture like the Microsoft 

Hyper-V. Or it can assume a monolithic hypervisor architecture like the VMware ESX for server virtualization. 

 

A micro-kernel hypervisor includes only the basic and unchanging functions (such as physical memory management 

and processor scheduling). The device drivers and other changeable 

 

 

components are outside the hypervisor. A monolithic hypervisor implements all the aforementioned functions, 

including those of the device drivers. Therefore, the size of the hypervisor code of a micro-kernel hypervisor is 

smaller than that of a monolithic hypervisor. Essentially, a hypervisor must be able to convert physical devices into 

virtual resources dedicated for the deployed VM to use. 

 

The Xen Architecture 

 

Xen is an open source hypervisor program developed by Cambridge University. Xen is a micro-kernel hypervisor, 

which separates the policy from the mechanism. The Xen hypervisor implements all the mechanisms, leaving the 

policy to be handled by Domain 0. Xen does not include any device drivers natively . It just provides a mechanism 

by which a guest OS can have direct access to the physical devices. As a result, the size of the Xen hypervisor is 

kept rather small. Xen provides a virtual environment located between the hardware and the OS. A number of 

vendors are in the process of developing commercial Xen hypervisors, among them are Citrix XenServer and Oracle 

VM . 

 

The core components of a Xen system are the hypervisor, kernel, and applications. The organization of the three 

components is important. Like other virtualization systems, many guest OSes can run on top of the hypervisor. 

However, not all guest OSes are created equal, and one in particular controls the others. The guest OS, which has 
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control ability, is called Domain 0, and the others are called Domain U. Domain 0 is a privileged guest OS of Xen. It 

is first loaded when Xen boots without any file system drivers being available. Domain 0 is designed to access 

hardware directly and manage devices. 

 

Therefore, one of the responsibilities of Domain 0 is to allocate and map hardware resources for the guest domains 

(the Domain U domains). 
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For example, Xen is based on Linux and its security level is C2. Its management VM is named Domain 0, which has 

the privilege to manage other VMs implemented on the same host. If Domain 0 is compromised, the hacker can 

control the entire system. So, in the VM system, security policies are needed to improve the security of Domain 0. 

Domain 0, behaving as a VMM, allows users to create, copy, save, read, modify, share, migrate, and roll back VMs 

as easily as manipulating a file, which flexibly provides tremendous benefits for users. Unfortunately, it also brings 

a series of security problems during the software life cycle and data lifetime. 

 

Traditionally, a machine’s lifetime can be envisioned as a straight line where the current state of the machine is a 

point that progresses monotonically as the software executes. During this time, configuration changes are made, 

software is installed, and patches are applied. In such an environment, the VM state is akin to a tree: At any point, 

execution can go into N different branches where multiple instances of a VM can exist at any point in this tree at any 

given time. VMs are allowed to roll back to previous states in their execution (e.g., to fix configuration 

 

 

errors) or rerun from the same point many times (e.g., as a means of distributing dynamic content or circulating a 

―live‖ system image). 

 

Binary Translation with Full Virtualization 

 

Depending on implementation technologies, hardware virtualization can be classified into two categories: full 

virtualization and host-based virtualization. Full virtualization does not need to modify the host OS. It relies on 

binary translation to trap and to virtualize the execution of certain sensitive, nonvirtualizable instructions. The guest 

OSes and their applications consist of noncritical and critical instructions. In a host-based system, both a host OS 

and a guest OS are used. A virtualization software layer is built between the host OS and guest OS. These two 

classes of VM architecture are introduced next. 

 

Full Virtualization 

 

With full virtualization, noncritical instructions run on the hardware directly while critical instructions are 

discovered and replaced with traps into the VMM to be emulated by software. Both the hypervisor and VMM 

approaches are considered full virtualization. Why are only critical instructions trapped into the VMM? This is 

because binary translation can incur a large performance overhead. Noncritical instructions do not control hardware 

or threaten the security of the system, but critical instructions do. Therefore, running noncritical instructions on 

hardware not only can promote efficiency, but also can ensure system security. 

 

Binary Translation of Guest OS Requests Using a VMM 

 

This approach was implemented by VMware and many other software companies. VMware puts the VMM at Ring 

0 and the guest OS at Ring 1. The VMM scans the instruction stream and identifies the privileged, control- and 

behavior-sensitive instructions. When these instructions are identified, they are trapped into the VMM, which 

emulates the behavior of these instructions. The method used in this emulation is called binary translation. 

Therefore, full virtualization combines binary translation and direct execution. The guest OS is completely 

decoupled from the underlying hardware. Consequently, the guest OS is unaware that it is being virtualized. Indirect 

execution of complex instructions via binary translation of guest OS requests using the VMM plus direct execution 

of simple instructions on the same host. Courtesy of VM Ware The performance of full virtualization may not be 

ideal, because it involves binary translation which is rather time-consuming. In particular, the full virtualization of 

I/O-intensive applications is a really a big challenge. Binary translation employs a code cache to store translated hot 

instructions to improve performance, but it increases the cost of memory usage. At the time of this writing, the 

performance of full virtualization on the x86 architecture is typically 80 percent to 97 percent that of the host 

machine. 

 

Host-Based Virtualization 
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An alternative VM architecture is to install a virtualization layer on top of the host OS. This host OS is still 

responsible for managing the hardware. The guest OSes are installed and run on top of the virtualization layer. 

Dedicated applications may run on the VMs. Certainly, some other applications can also run with the host OS 

directly. This host-based architecture has some distinct advantages, as enumerated next. First, the user can install 
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this VM architecture without modifying the host OS. The virtualizing software can rely on the host OS to provide 

device drivers and other low-level services. This will simplify the VM design and ease its deployment. Second, the 

host-based approach appeals to many host machine configurations. Compared to the hypervisor/VMM architecture, 

the performance of the host-based architecture may also be low. When an application requests hardware access, it 

involves four layers of mapping which downgrades performance significantly. When the ISA of a guest OS is 

different from the ISA of the underlying hardware, binary translation must be adopted. Although the host-based 

architecture has flexibility, the performance is too low to be useful in practice. 

 

Para-Virtualization with Compiler Support 

 

Para-virtualization needs to modify the guest operating systems. A para-virtualized VM provides special APIs 

requiring substantial OS modifications in user applications. Performance degradation is a critical issue of a 

virtualized system. No one wants to use a VM if it is much slower than using a physical machine. The virtualization 

layer can be inserted at different positions in a machine software stack. However, para-virtualization attempts to 

reduce the virtualization overhead, and thus improve performance by modifying only the guest OS kernel, illustrates 

the concept of a para-virtualized VM architecture. The guest operating systems are para-virtualized. They are 

assisted by an intelligent compiler to replace the nonvirtualizable OS instructions by hypercalls . The traditional x86 

processor offers four instruction execution rings: Rings 0, 1, 2, and 3. The lower the ring number, the higher the 

privilege of instruction being executed. The OS is responsible for managing the hardware and the privileged 

instructions to execute at Ring 0, while user-level applications run at Ring 3. The best example of para-virtualization 

is the KVM to be described below. 

 

Para-virtualized VM architecture, which involves modifying the guest OS kernel to replace nonvirtualizable 

instructions with hypercalls for the hypervisor or the VMM to carry out the virtualization process 

 

The use of a para-virtualized guest OS assisted by an intelligent compiler to replace nonvirtualizable OS instructions 

by hypercalls. Courtesy of VMWare 

 

Para-Virtualization Architecture 

 

When the x86 processor is virtualized, a virtualization layer is inserted between the hardware and the OS. According 

to the x86 ring definition, the virtualization layer should also be installed at Ring 0. Different instructions at Ring 0 

may cause some problems. Para-virtualization replaces nonvirtualizable instructions with hypercalls that 

communicate directly with the hypervisor or 

 

 

VMM. However, when the guest OS kernel is modified for virtualization, it can no longer run on the hardware 

directly. 

 

Although para-virtualization reduces the overhead, it has incurred other problems. First, its compatibility and 

portability may be in doubt, because it must support the unmodified OS as well. Second, the cost of maintaining 

para-virtualized OSes is high, because they may require deep OS kernel modifications. Finally, the performance 

advantage of para-virtualization varies greatly due to workload variations. Compared with full virtualization, para- 

virtualization is relatively easy and more practical. The main problem in full virtualization is its low performance in 

binary translation. To speed up binary translation is difficult. Therefore, many virtualization products employ the 

para-virtualization architecture. The popular Xen, KVM, and VMware ESX are good examples. 

 

KVM (Kernel-Based VM) 

 

This is a Linux para-virtualization system—a part of the Linux version 2.6.20 kernel.Memory management and 

scheduling activities are carried out by the existing Linux kernel. The KVM does the rest, which makes it simpler 

than the hypervisor that controls the entire machine. KVM is a hardware-assisted para-virtualization tool, which 

improves performance and supports unmodified guest OSes such as Windows, Linux, Solaris, and other UNIX 
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variants. 

 

Para-Virtualization with Compiler Support 

 

Unlike the full virtualization architecture which intercepts and emulates privileged and sensitive instructions at 

runtime, para-virtualization handles these instructions at compile time. The guest OS kernel is modified to replace 
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the privileged and sensitive instructions with hypercalls to the hypervisor or VMM. Xen assumes such a para- 

virtualization architecture. The guest OS running in a guest domain may run at Ring 1 instead of at Ring 0. This 

implies that the guest OS may not be able to execute some privileged and sensitive instructions. The privileged 

instructions are implemented by hypercalls to the hypervisor. After replacing the instructions with hypercalls, the 

modified guest OS emulates the behavior of the original guest OS. On an UNIX system, a system call involves an 

interrupt or service routine. The hypercalls apply a dedicated service routine in Xen. 

 

VIRTUALIZATION OF CPU, MEMORY, AND I/O DEVICES 

 

To support virtualization, processors such as the x86 employ a special running mode and instructions, known as 

hardware-assisted virtualization. In this way, the VMM and guest OS run in different modes and all sensitive 

instructions of the guest OS and its applications are trapped in the VMM. To save processor states, mode switching 

is completed by hardware. For the x86 architecture, Intel and AMD have proprietary technologies for hardware- 

assisted virtualization. 

 

 

Hardware Support for Virtualization 

 

Modern operating systems and processors permit multiple processes to run simultaneously. If there is no protection 

mechanism in a processor, all instructions from different processes will access the hardware directly and cause a 

system crash. Therefore, all processors have at least two modes, user mode and supervisor mode, to ensure 

controlled access of critical hardware. Instructions running in supervisor mode are called privileged instructions. 

Other instructions are unprivileged instructions. In a virtualized environment, it is more difficult to make OSes and 

applications run correctly because there are more layers in the machine stack. Intel’s hardware support approach. 

 

At the time of this writing, many hardware virtualization products were available. The VMware Workstation is a 

VM software suite for x86 and x86-64 computers. This software suite allows users to set up multiple x86 and x86- 

64 virtual computers and to use one or more of these VMs simultaneously with the host operating system. The 

VMware Workstation assumes the host-based virtualization. Xen is a hypervisor for use in IA-32, x86-64, Itanium, 

and PowerPC 970 hosts. Actually, Xen modifies Linux as the lowest and most privileged layer, or a hypervisor. One 

or more guest OS can run on top of the hypervisor. KVM (Kernel-based Virtual Machine) is a Linux kernel 

virtualization infrastructure. KVM can support hardware-assisted virtualization and paravirtualization by using the 

Intel VT-x or AMD-v and VirtIO framework, respectively. The VirtIO framework includes a paravirtual Ethernet 

card, a disk I/O controller, a balloon device for adjusting guest memory usage, and a VGA graphics interface using 

VMware drivers. 

 

CPU Virtualization 

 

A VM is a duplicate of an existing computer system in which a majority of the VM instructions are executed on the 

host processor in native mode. Thus, unprivileged instructions of VMs run directly on the host machine for higher 

efficiency. Other critical instructions should be handled carefully for correctness and stability. The critical 

instructions are divided into three categories: privileged instructions, control-sensitive instructions, and behavior- 

sensitive instructions. Privileged instructions execute in a privileged mode and will be trapped if executed outside 

this mode. Control-sensitive 

 

instructions attempt to change the configuration of resources used. Behavior-sensitive instructions have different 

behaviors depending on the configuration of resources, including the load and store operations over the virtual 

memory. A CPU architecture is virtualizable if it supports the ability to run the VM’s privileged and unprivileged 

instructions in the CPU’s user mode while the VMM runs in supervisor mode. When the privileged instructions 

including control- and behavior-sensitive instructions of a VM are executed, they are trapped in the VMM. In this 

case, the VMM acts as a unified mediator for hardware access from different VMs to guarantee the correctness and 

stability of the whole system. However, not 
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all CPU architectures are virtualizable. RISC CPU architectures can be naturally virtualized because all control-and 

behavior-sensitive instructions are privileged instructions. On the contrary, x86 CPU architectures are not primarily 

designed to support virtualization. This is because about 10 sensitive instructions, such as SGDT and SMSW, are 

not privileged instructions. When these instructions execute in virtualization, they cannot be trapped in the VMM. 
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On a native UNIX-like system, a system call triggers the 80h interrupt and passes control to the OS kernel. The 

interrupt handler in the kernel is then invoked to process the system call. On a paravirtualization system such as 

Xen, a system call in the guest OS first triggers the 80h interrupt normally. Almost at the same time, the 82h 

interrupt in the hypervisor is triggered. Incidentally, control is passed on to the hypervisor as well. When the 

hypervisor completes its task for the guest OS system call, it passes control back to the guest OS kernel. Certainly, 

the guest OS kernel may also invoke the hypercall while it’s running. Although paravirtualization of a CPU lets 

unmodified applications run in the VM, it causes a small performance penalty. 

 

Hardware-Assisted CPU Virtualization 

 

This technique attempts to simplify virtualization because full or paravirtualization is complicated. Intel and AMD 

add an additional mode called privilege mode level (some people call it Ring-1) to x86 processors. Therefore, 

operating systems can still run at Ring 0 and the hypervisor can run at Ring -1. All the privileged and sensitive 

instructions are trapped in the hypervisor automatically. This technique removes the difficulty of implementing 

binary translation of full virtualization. It also lets the operating system run in VMs without modification. 

 

Memory Virtualization 

 

Virtual memory virtualization is similar to the virtual memory support provided by modern operating systems. In a 

traditional execution environment, the operating system maintains mappings of virtual memory to machine memory 

using page tables, which is a one-stage mapping from virtual memory to machine memory. All modern x86 CPUs 

include a memory management unit (MMU) and a translation lookaside buffer (TLB) to optimize virtual memory 

performance. However, in a virtual execution environment, virtual memory virtualization involves sharing the 

physical system memory in RAM and dynamically allocating it to the physical memory of the VMs.That means a 

two-stage mapping process should be maintained by the guest OS and the VMM, respectively: virtual memory to 

physical memory and physical memory to machine memory. Furthermore, MMU virtualization should be supported, 

which is transparent to the guest OS. The guest OS continues to control the mapping of virtual addresses to the 

physical memory addresses of VMs. But the guest OS cannot directly access the actual machine memory. The VMM 

is responsible for mapping the guest physical memory to the actual machine memory, shows the two-level memory 

mapping procedure. Two-level memory mapping procedure. Courtesy of R. Rblig, et al. Since each page table of the 

guest OSes has a separate page table in the VMM corresponding to it, the VMM page table is called the 

 

 

shadow page table. Nested page tables add another layer of indirection to virtual memory. The MMU already 

handles virtual-to-physical translations as defined by the OS. Then the physical memory addresses are translated to 

machine addresses using another set of page tables defined by the hypervisor. Since modern operating systems 

maintain a set of page tables for every process, the shadow page tables will get flooded. Consequently, the 

performance overhead and cost of memory will be very high. VMware uses shadow page tables to perform virtual- 

memory-to-machine-memory address translation. Processors use TLB hardware to map the virtual memory directly 

to the machine memory to avoid the two levels of translation on every access. When the guest OS changes the 

virtual memory to a physical memory mapping, the VMM updates the shadow page tables to enable a direct lookup. 

The AMD Barcelona processor has featured hardware-assisted memory virtualization since 2007. It provides 

hardware assistance to the two-stage address translation in a virtual execution environment by using a technology 

called nested paging. 

 

I/O Virtualization 

 

I/O virtualization involves managing the routing of I/O requests between virtual devices and the shared physical 

hardware. At the time of this writing, there are three ways to implement I/O virtualization: full device emulation, 

para-virtualization, and direct I/O.Full device emulation is the first approach for I/O virtualization. Generally, this 

approach emulates well-known, real-world devices. All the functions of a device or bus infrastructure, such as 

device enumeration, identification, interrupts, and DMA, are replicated in software. This software is located in the 
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VMM and acts as a virtual device. The I/O access requests of the guest OS are trapped in the VMM which interacts 

with the I/O devices. Device emulation for I/O virtualization implemented inside the middle layer that maps real I/O 

devices into the virtual devices for the guest device driver to use. Courtesy of V. Chadha, et al. and Y. Dong, et al. A 

single hardware device can be shared by multiple VMs that run concurrently. However, software emulation runs 

much slower than the hardware it emulates. 
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The para-virtualization method of I/O virtualization is typically used in Xen. It is also known as the split driver 

model consisting of a frontend driver and a backend driver. The frontend driver is running in Domain U and the 

backend driver is running in Domain 0. They interact with each other via a block of shared memory. The frontend 

driver manages the I/O requests of the guest OSes and the backend driver is responsible for managing the real I/O 

devices and multiplexing the I/O data of different VMs. Although para-I/O-virtualization achieves better device 

performance than full device emulation, it comes with a higher CPU overhead. 

 

Direct I/O virtualization lets the VM access devices directly. It can achieve close-to-native performance without 

high CPU costs. However, current direct I/O virtualization implementations focus on networking for mainframes. 

There are a lot of challenges for commodity hardware devices. For example, when a physical device is reclaimed 

(required by workload migration) for later reassignment, it may have been set to an arbitrary state (e.g., DMA to 

some arbitrary 

 

 

memory locations) that can function incorrectly or even crash the whole system. Since software-based I/O 

virtualization requires a very high overhead of device emulation, hardware-assisted I/O virtualization is critical. Intel 

VT-d supports the remapping of I/O DMA transfers and device-generated interrupts. The architecture of VT-d 

provides the flexibility to support multiple usage models that may run unmodified, special-purpose, or 

―virtualization-aware‖ guest OSes. 

 

Another way to help I/O virtualization is via self-virtualized I/O (SV-IO) . The key idea of SV-IO is to harness the 

rich resources of a multicore processor. All tasks associated with virtualizing an I/O device are encapsulated in SV- 

IO. It provides virtual devices and an associated access API to VMs and a management API to the VMM. SV-IO 

defines one virtual interface (VIF) for every kind of virtualized I/O device, such as virtual network interfaces, virtual 

block devices (disk), virtual camera devices, and others. The guest OS interacts with the VIFs via VIF device 

drivers. Each VIF consists of two message queues. One is for outgoing messages to the devices and the other is for 

incoming messages from the devices. In addition, each VIF has a unique ID for identifying it in SV-IO. 

 

Virtual Clusters and Resource Management 

 

A physical cluster is a collection of servers (physical machines) interconnected by a physical network such as a 

LAN. various clustering techniques on physical machines. Here, we introduce virtual clusters and study its 

properties as well as explore their potential applications. In this section, we will study three critical design issues of 

virtual clusters: live migration of VMs, memory and file migrations, and dynamic deployment of virtual clusters. 

When a traditional VM is initialized, the administrator needs to manually write configuration information or specify 

the configuration sources. When more VMs join a network, an inefficient configuration always causes problems 

with overloading or underutilization. Amazon’s Elastic Compute Cloud (EC2) is a good example of a web service 

that provides elastic computing power in a cloud. EC2 permits customers to create VMs and to manage user 

accounts over the time of their use. Most virtualization platforms, including XenServer and VMware ESX Server, 

support a bridging mode which allows all domains to appear on the network as individual hosts. By using this mode, 

VMs can communicate with one another freely through the virtual network interface card and configure the network 

automatically. 

 

Physical versus Virtual Clusters 

 

Virtual clusters are built with VMs installed at distributed servers from one or more physical clusters. The VMs in a 

virtual cluster are interconnected logically by a virtual network across several physical networks. Figure 3.18 

illustrates the concepts of virtual clusters and physical clusters. Each virtual cluster is formed with physical 

machines or a VM hosted by multiple physical clusters. The virtual cluster boundaries are shown as distinct 

boundaries. A cloud platform with four virtual clusters over three physical clusters shaded differently. Courtesy of 

Fan Zhang, Tsinghua University 
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The provisioning of VMs to a virtual cluster is done dynamically to have the following interesting properties: 

 

• The virtual cluster nodes can be either physical or virtual machines. Multiple VMs running with different OSes can 

be deployed on the same physical node. 
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• A VM runs with a guest OS, which is often different from the host OS, that manages the resources in the physical 

machine, where the VM is implemented. 

 

• The purpose of using VMs is to consolidate multiple functionalities on the same server. This will greatly enhance 

server utilization and application flexibility. 

 

• VMs can be colonized (replicated) in multiple servers for the purpose of promoting distributed parallelism, fault 

tolerance, and disaster recovery. 

 

• The size (number of nodes) of a virtual cluster can grow or shrink dynamically, similar to the way an overlay 

network varies in size in a peer-to-peer (P2P) network. 

 

• The failure of any physical nodes may disable some VMs installed on the failing nodes. But the failure of VMs 

will not pull down the host system. 

Since system virtualization has been widely used, it is necessary to effectively manage VMs running on a mass of 

physical computing nodes (also called virtual clusters) and consequently build a high-performance virtualized 

computing environment. This involves virtual cluster deployment, monitoring and management over large-scale 

clusters, as well as resource scheduling, load balancing, server consolidation, fault tolerance, and other techniques. 

The different node colors refer to different virtual clusters. In a virtual cluster system, it is quite important to store 

the large number of VM images efficiently.The concept of a virtual cluster based on application partitioning or 

customization. The different colors in the figure represent the nodes in different virtual clusters. As a large number 

of VM images might be present, the most important thing is to determine how to store those images in the system 

efficiently. There are common installations for most users or applications, such as operating systems or user-level 

programming libraries. These software packages can be preinstalled as templates (called template VMs). With these 

templates, users can build their own software stacks. New OS instances can be copied from the template VM. User- 

specific components such as programming libraries and applications can be installed to those instances. The concept 

of a virtual cluster based on application partitioning. Courtesy of Kang Chen, TsinghuaUniversity 2008 

 

Three physical clusters and Four virtual clusters are created on the right, over the physical clusters. The physical 

machines are also called host systems. In contrast, the VMs are guest systems. The host and guest systems may run 

with different operating systems. Each VM can be installed on a remote server or replicated on multiple servers 

belonging to the same or 

 

 

different physical clusters. The boundary of a virtual cluster can change as VM nodes are added, removed, or 

migrated dynamically over time. 

 

Fast Deployment and Effective Scheduling 

 

The system should have the capability of fast deployment. Here, deployment means two things: to construct and 

distribute software stacks (OS, libraries, applications) to a physical node inside clusters as fast as possible, and to 

quickly switch runtime environments from one user’s virtual cluster to another user’s virtual cluster. If one user 

finishes using his system, the corresponding virtual cluster should shut down or suspend quickly to save the 

resources to run other VMs for other users. 

 

The concept of ―green computing‖ has attracted much attention recently. However,previous approaches have 

focused on saving the energy cost of components in a single workstation without a global vision. Consequently, they 

do not necessarily reduce the power consumption of the whole cluster. Other cluster-wide energy-efficient 

techniques can only be applied to homogeneous workstations and specific applications. The live migration of VMs 

allows workloads of one node to transfer to another node. However, it does not guarantee that VMs can randomly 

migrate among themselves. In fact, the potential overhead caused by live migrations of VMs cannot be ignored. 
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The overhead may have serious negative effects on cluster utilization, throughput, and QoS issues. Therefore, the 

challenge is to determine how to design migration strategies to implement green computing without influencing the 

performance of clusters. Another advantage of virtualization is load balancing of applications in a virtual cluster. 

Load balancing can be achieved using the load index and frequency of user logins. The automatic scale-up and 

scale-down mechanism of a virtual cluster can be implemented based on this model. Consequently, we can increase 

the resource utilization of nodes and shorten the response time of systems. Mapping VMs onto the most appropriate 
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physical node should promote performance. Dynamically adjusting loads among nodes by live migration of VMs is 

desired, when the loads on cluster nodes become quite unbalanced. 

 

High-Performance Virtual Storage 

 

The template VM can be distributed to several physical hosts in the cluster to customize the VMs. In addition, 

existing software packages reduce the time for customization as well as switching virtual environments. It is 

important to efficiently manage the disk spaces occupied by template software packages. Some storage architecture 

design can be applied to reduce duplicated blocks in a distributed file system of virtual clusters. Hash values are 

used to compare the contents of data blocks. Users have their own profiles which store the identification of the data 

blocks for corresponding VMs in a user-specific virtual cluster. New blocks are created when users modify the 

corresponding data. Newly created blocks are identified in the users’ profiles. Basically, there are four steps to 

deploy a group of VMs onto a target cluster: preparing 

 

 

the disk image, configuring the VMs, choosing the destination nodes, and executing the VM deployment command 

on every host. Many systems use templates to simplify the disk image preparation process. A template is a disk 

image that includes a preinstalled operating system with or without certain application software. Users choose a 

proper template according to their requirements and make a duplicate of it as their own disk image. Templates could 

implement the COW (Copy on Write) format. A new COW backup file is very small and easy to create and transfer. 

Therefore, it definitely reduces disk space consumption. In addition, VM deployment time is much shorter than that 

of copying the whole raw image file. Every VM is configured with a name, disk image, network setting, and 

allocated CPU and memory. One needs to record each VM configuration into a file. However, this method is 

inefficient when managing a large group of VMs. VMs with the same configurations could use preedited profiles to 

simplify the process. In this scenario, the system configures the VMs according to the chosen profile. Most 

configuration items use the same settings, while some of them, such as UUID, VM name, and IP address, are 

assigned with automatically calculated values. Normally, users do not care which host is running their VM. A 

strategy to choose the proper destination host for any VM is needed. The deployment principle is to fulfill the VM 

requirement and to balance workloads among the whole host network. 

 

Live VM Migration Steps and Performance Effects 

 

In a cluster built with mixed nodes of host and guest systems, the normal method of operation is to run everything 

on the physical machine. When a VM fails, its role could be replaced by another VM on a different node, as long as 

they both run with the same guest OS. In other words, a physical node can fail over to a VM on another host. This is 

different from physical-to-physical failover in a traditional physical cluster. The advantage is enhanced failover 

flexibility. The potential drawback is that a VM must stop playing its role if its residing host node fails. However, 

this problem can be mitigated with VM life migration. Figure 3.20 shows the process of life migration of a VM from 

host A to host B. The migration copies the VM state file from the storage area to the host machine. Live migration 

process of a VM from one host to another. Courtesy of C. Clark, et al. are four ways to manage a virtual cluster. 

First, you can use a guest-based manager, by which the cluster manager resides on a guest system. In this case, 

multiple VMs form a virtual cluster. For example, openMosix is an open source Linux cluster running different 

guest systems on top of the Xen hypervisor. Another example is Sun’s cluster Oasis, an experimental Solaris cluster 

of VMs supported by a VMware VMM. 

 

Second, you can build a cluster manager on the host systems. The host-based manager supervises the guest systems 

and can restart the guest system on another physical machine. A good example is the VMware HA system that can 

restart a guest system after failure. 

 

These two cluster management systems are either guest-only or host-only, but they do not mix. A third way to 

manage a virtual cluster is to use an independent cluster manager on both the host and guest systems. This will make 

infrastructure management more complex, however. Finally, 
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you can use an integrated cluster on the guest and host systems. This means the manager must be designed to 

distinguish between virtualized resources and physical resources. Various cluster management schemes can be 

greatly enhanced when VM life migration is enabled with minimal overhead. 
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VMs can be live-migrated from one physical machine to another; in case of failure, one VM can be replaced by 

another VM. Virtual clusters can be applied in computational grids, cloud platforms, and high-performance 

computing (HPC) systems. The major attraction of this scenario is that virtual clustering provides dynamic resources 

that can be quickly put together upon user demand or after a node failure. In particular, virtual clustering plays a key 

role in cloud computing. When a VM runs a live service, it is necessary to make a trade-off to ensure that the 

migration occurs in a manner that minimizes all three metrics. The motivation is to design a live VM migration 

scheme with negligible downtime, the lowest network bandwidth consumption possible, and a reasonable total 

migration time. 

 

Furthermore, we should ensure that the migration will not disrupt other active services residing in the same host 

through resource contention (e.g., CPU, network bandwidth). A VM can be in one of the following four states. An 

inactive state is defined by the virtualization platform, under which the VM is not enabled. An active state refers to a 

VM that has been instantiated at the virtualization platform to perform a real task. A paused state corresponds to a 

VM that has been instantiated but disabled to process a task or paused in a waiting state. A VM enters the suspended 

state if its machine file and virtual resources are stored back to the disk, live migration of a VM consists of the 

following six steps: 

 

Steps 0 and 1: Start migration. This step makes preparations for the migration,including determining the migrating 

VM and the destination host. Although users could manually make a VM migrate to an appointed host, in most 

circumstances, the migration is automatically started by strategies such as load balancing and serverconsolidation. 

 

Steps 2: Transfer memory. Since the whole execution state of the VM is stored in memory, sending the VM’s 

memory to the destination node ensures continuity of the service provided by the VM. All of the memory data is 

transferred in the first round, and then the migration controller recopies the memory data which is changed in the 

last round. These steps keep iterating until the dirty portion of the memory is small enough to handle the final copy. 

Although precopying memory is performed iteratively, the execution of programs is not obviously interrupted. 

 

Step 3: Suspend the VM and copy the last portion of the data. The migrating VM’s execution is suspended when the 

last round’s memory data is transferred. Other nonmemory data such as CPU and network states should be sent as 

well. During this step, the VM is stopped and its applications will no longer run. This ―service unavailable‖ time is 

called the ―downtime‖ of migration, which should be as short as possible so that it can be negligible to users. 

 

 

Steps 4 and 5: Commit and activate the new host. After all the needed data is copied, on the destination host, the VM 

reloads the states and recovers the execution of programs in it, and the service provided by this VM continues. Then 

the network connection is redirected to the new VM and the dependency to the source host is cleared. The whole 

migration process finishes by removing the original VM from the source host. 

 

The effect on the data transmission rate (Mbit/second) of live migration of a VM from one host to another. Before 

copying the VM with 512 KB files for 100 clients, the data throughput was 870 MB/second. The first precopy takes 

63 seconds, during which the rate is reduced to 765 MB/second. Then the data rate reduces to 694 MB/second in 9.8 

seconds for more iterations of the copying process. The system experiences only 165 ms of downtime, before the 

VM is restored at the destination host. This experimental result shows a very small migration overhead in live 

transfer of a VMbetween host nodes. This is critical to achieve dynamic cluster reconfiguration and disaster 

recovery as needed in cloud computing. 

 

Effect on data transmission rate of a VM migrated from one failing web server to another. Courtesy of 

 

C. Clark, et al. With the emergence of widespread cluster computing more than a decade ago, many 

 

cluster configuration and management systems have been developed to achieve a range of goals. These goals 

naturally influence individual approaches to cluster management. VM technology has become a popular method for 
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simplifying management and sharing of physical computing resources. Platforms such as VMware and Xen allow 

multiple VMs with different operating systems and configurations to coexist on the same physical host in mutual 

isolation. Clustering inexpensive computers is an effective way to obtain reliable, scalable computing power for 

network services and compute-intensive applications 

 

Migration of Memory, Files, and Network Resources 



 

NARAYANA ENGINEERING COLLEGE::GUDUR                          Prepared By Mr.U.Satyanarayana 

 

Since clusters have a high initial cost of ownership, including space, power conditioning, and cooling equipment, 

leasing or sharing access to a common cluster is an attractive solution when demands vary over time. Shared clusters 

offer economies of scale and more effective utilization of resources by multiplexing. Early configuration and 

management systems focus on expressive and scalable mechanisms for defining clusters for specific types of 

service, and physically partition cluster nodes among those types. When one system migrates to another physical 

node, we should consider the following issues. 

 

Memory Migration 

 

This is one of the most important aspects of VM migration. Moving the memory instance of a VM from one 

physical host to another can be approached in any number of ways. But 

 

 

traditionally, the concepts behind the techniques tend to share common implementation paradigms. The techniques 

employed for this purpose depend upon the characteristics of application/workloads supported by the guest OS. 

 

Memory migration can be in a range of hundreds of megabytes to a few gigabytes in a typical system today, and it 

needs to be done in an efficient manner. The Internet Suspend-Resume (ISR) technique exploits temporal locality as 

memory states are likely to have considerable overlap in the suspended and the resumed instances of a VM. 

Temporal locality refers to the fact that the memory states differ only by the amount of work done since a VM was 

last suspended before being initiated for migration. 

 

To exploit temporal locality, each file in the file system is represented as a tree of small subfiles. A copy of this tree 

exists in both the suspended and resumed VM instances. The advantage of using a tree-based representation of files 

is that the caching ensures the transmission of only those files which have been changed. The ISR technique deals 

with situations where the migration of live machines is not a necessity. Predictably, the downtime (the period during 

which the service is unavailable due to there being no currently executing instance of a VM) is high, compared to 

some of the other techniques 

 

File System Migration 

 

To support VM migration, a system must provide each VM with a consistent, location-independent view of the file 

system that is available on all hosts. A simple way to achieve this is to provide each VM with its own virtual disk 

which the file system is mapped to and transport the contents of this virtual disk along with the other states of the 

VM. However, due to the current trend of high-capacity disks, migration of the contents of an entire disk over a 

network is not a viable solution. Another way is to have a global file system across all machines where a VM could 

be located. This way removes the need to copy files from one machine to another because all files are network- 

accessible. 

 

A distributed file system is used in ISR serving as a transport mechanism for propagating a suspended VM state. 

The actual file systems themselves are not mapped onto the distributed file system. Instead, the VMM only accesses 

its local file system. The relevant VM files are explicitly copied into the local file system for a resume operation and 

taken out of the local file system for a suspend operation. This approach relieves developers from the complexities 

of implementing several different file system calls for different distributed file systems. It also essentially 

disassociates the VMM from any particular distributed file system semantics. However, this decoupling means that 

the VMM has to store the contents of each VM’s virtual disks in its local files, which have to be moved around with 

the other state information of that VM. 

 

In smart copying, the VMM exploits spatial locality. Typically, people often move between the same small number 

of locations, such as their home and office. In these conditions, 
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it is possible to transmit only the difference between the two file systems at suspending and resuming locations. This 

technique significantly reduces the amount of actual physical data that has to be moved. In situations where there is 

no locality to exploit, a different approach is to synthesize much of the state at the resuming site. On many systems, 

user files only form a small fraction of the actual data on disk. Operating system and application software account 

for the majority of storage space. The proactive state transfer solution works in those cases where the resuming site 

can be predicted with reasonable confidence. 
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Network Migration 

 

A migrating VM should maintain all open network connections without relying on forwarding mechanisms on the 

original host or on support from mobility or redirection mechanisms. To enable remote systems to locate and 

communicate with a VM, each VM must be assigned a virtual IP address known to other entities. This address can 

be distinct from the IP address of the host machine where the VM is currently located. Each VM can also have its 

own distinct virtual MAC address. The VMM maintains a mapping of the virtual IP and MAC addresses to their 

corresponding VMs. In general, a migrating VM includes all the protocol states and carries its IP address with it. 

 

If the source and destination machines of a VM migration are typically connected to a single switched LAN, an 

unsolicited ARP reply from the migrating host is provided advertising that the IP has moved to a new location. This 

solves the open network connection problem by reconfiguring all the peers to send future packets to a new location. 

Although a few packets that have already been transmitted might be lost, there are no other problems with this 

mechanism. Alternatively, on a switched network, the migrating OS can keep its original Ethernet MAC address and 

rely on the network switch to detect its move to a new port. 

 

Live migration means moving a VM from one physical node to another while keeping its OS environment and 

applications unbroken. This capability is being increasingly utilized in today’s enterprise environments to provide 

efficient online system maintenance, reconfiguration, load balancing, and proactive fault tolerance. It provides 

desirable features to satisfy requirements for computing resources in modern computing systems, including server 

consolidation, performance isolation, and ease of management. As a result, many implementations are available 

which support the feature using disparate functionalities. Traditional migration suspends VMs before the 

transportation and then resumes them at the end of the process. By importing the precopy mechanism, a VM could 

be live-migrated without stopping the VM and keep the applications running during the migration. Live migration is 

a key feature of system virtualization technologies. Here, we focus on VM migration within a cluster environment 

where a network-accessible storage system, such as storage area network (SAN) or network attached storage (NAS), 

is employed. Only memory and CPU status needs to be transferred from the source node to the target node. Live 

migration techniques mainly use the precopy approach, which first transfers all memory pages, and then only copies 

modified pages during the last round 

 

 

iteratively. The VM service downtime is expected to be minimal by using iterative copy operations.When 

applications’ writable working set becomes small, the VM is suspended and only the CPU state and dirty pages in 

the last round are sent out to the destination. In the precopy phase, although a VM service is still available, much 

performance degradation will occur because the migration daemon continually consumes network bandwidth to 

transfer dirty pages in each round. An adaptive rate limiting approach is employed to mitigate this issue, but total 

migration time is prolonged by nearly 10 times. Moreover, the maximum number of iterations must be set because 

not all applications’ dirty pages are ensured to converge to a small writable working set over multiple rounds. In 

fact, these issues with the precopy approach are caused by the large amount of transferred data during the whole 

migration process. A checkpointing/recovery and trace/replay approach (CR/TR-Motion) is proposed to provide fast 

VM migration. This approach transfers the execution trace file in iterations rather than dirty pages, which is logged 

by a trace daemon. Apparently, the total size of all log files is much less than that of dirty pages. So, total migration 

time and downtime of migration are drastically reduced. However, CR/TR-Motion is valid only when the log replay 

rate is larger than the log growth rate. The inequality between source and target nodes limits the application scope of 

live migration in clusters. Another strategy of postcopy is introduced for live migration of VMs. Here, all memory 

pages are transferred only once during the whole migration process and the baseline total migration time is reduced. 

But the downtime is much higher than that of precopy due to the latency of fetching pages from the source node 

before the VM can be resumed on the target. With the advent of multicore or many-core machines, abundant CPU 

resources are available. Even if several VMs reside on a same multicore machine, CPU resources are still rich 

because physical CPUs are frequently amenable to multiplexing. We can exploit these copious CPU resources to 

compress page frames and the amount of transferred data can be significantly reduced. Memory compression 
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algorithms typically have little memory overhead. Decompression is simple and very fast and requires no memory 

for decompression. 

 

VIRTUALIZATION FOR DATA-CENTER AUTOMATION 

 

Data centers have grown rapidly in recent years, and all major IT companies are pouring their resources into 

building new data centers. In addition, Google, Yahoo!, Amazon, Microsoft, HP, Apple, and IBM are all in the 
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game. All these companies have invested billions of dollars in data-center construction and automation. Data-center 

automation means that huge volumes of hardware, software, and database resources in these data centers can be 

allocated dynamically to millions of Internet users simultaneously, with guaranteed QoS and cost-effectiveness. 

 

This automation process is triggered by the growth of virtualization products and cloud computing services. From 

2006 to 2011, according to an IDC 2007 report on the growth of virtualization and its market distribution in major 

IT sectors. In 2006, virtualization has a market share of $1,044 million in business and enterprise opportunities. The 

majority was dominated by production consolidation and software development. Virtualization is moving 

 

 

towards enhancing mobility, reducing planned downtime (for maintenance), and increasing the number of virtual 

clients. 

 

The latest virtualization development highlights high availability (HA), backup services, workload balancing, and 

further increases in client bases. IDC projected that automation, service orientation, policy-based, and variable costs 

in the virtualization market. The total business opportunities may increase to $3.2 billion by 2011. The major market 

share moves to the areas of HA, utility computing, production consolidation, and client bases. In what follows, we 

will discuss server consolidation, virtual storage, OS support, and trust management in automated data-center 

designs. 

 

Server Consolidation in Data Centers 

 

In data centers, a large number of heterogeneous workloads can run on servers at various times. These 

heterogeneous workloads can be roughly divided into two categories: chatty workloads and noninteractive 

workloads. Chatty workloads may burst at some point and return to a silent state at some other point. A web video 

service is an example of this, whereby a lot of people use it at night and few people use it during the day. 

Noninteractive workloads do not require people’s efforts to make progress after they are submitted. High- 

performance computing is a typical example of this. At various stages, the requirements for resources of these 

workloads are dramatically different. However, to guarantee that a workload will always be able to cope with all 

demand levels, theworkload is statically allocated enough resources so that peak demand is satisfied. 

 

In this case, the granularity of resource optimization is focused on the CPU, memory, and network interfaces. 

Therefore, it is common that most servers in data centers are underutilized. A large amount of hardware, space, 

power, and management cost of these servers is wasted. Server consolidation is an approach to improve the low 

utility ratio of hardware resources by reducing the number of physical servers. Among several server consolidation 

techniques such as centralized and physical consolidation, virtualization-based server consolidation is the most 

powerful. Data centers need to optimize their resource management. Yet these techniques are performed with the 

granularity of a full server machine, which makes resource management far from well optimized. Server 

virtualization enables smaller resource allocation than a physical machine. 

 

In general, the use of VMs increases resource management complexity. This causes a challenge in terms of how to 

improve resource utilization as well as guarantee QoS in data centers. In detail, server virtualization has the 

following side effects: 

 

• Consolidation enhances hardware utilization. Many underutilized servers are consolidated into fewer servers to 

enhance resource utilization. Consolidation also facilitates backup services and disaster recovery. 

 

 

• This approach enables more agile provisioning and deployment of resources. In a virtual environment, the images 

of the guest OSes and their applications are readily cloned and reused. 

 

• The total cost of ownership is reduced. In this sense, server virtualization causes deferred purchases of new 
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servers, a smaller data-center footprint, lower maintenance costs, and lower power, cooling, and cabling 

requirements. 

 

• This approach improves availability and business continuity. The crash of a guest OS has no effect on the host OS 

or any other guest OS. It becomes easier to transfer a VM from one server to another, because virtual servers are 

unaware of the underlying hardware. 
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To automate data-center operations, one must consider resource scheduling, architectural support, power 

management, automatic or autonomic resource management, performance of analytical models, and so on. In 

virtualized data centers, an efficient, on-demand, fine-grained scheduler is one of the key factors to improve 

resource utilization. Scheduling and reallocations can be done in a wide range of levels in a set of data centers. The 

levels match at least at the VM level, server level, and data-center level. 

 

Ideally, scheduling and resource reallocations should be done at all levels. However, due to the complexity of this, 

current techniques only focus on a single level or, at most, two levels. 

 

Dynamic CPU allocation is based on VM utilization and application-level QoS metrics. One method considers both 

CPU and memory flowing as well as automatically adjusting resource overhead based on varying workloads in 

hosted services. Another scheme uses a two-level resource management system to handle the complexity involved. 

A local controller at the VM level and a global controller at the server level are designed. They implement 

autonomic resource allocation via the interaction of the local and global controllers. Multicore and virtualization are 

two cutting techniques that can enhance each other. However, the use of CMP is far from well optimized. The 

memory system of CMP is a typical example. One can design a virtual hierarchy on a CMP in data centers. One can 

consider protocols that minimize the memory access time, inter-VM interferences, facilitating VM reassignment, 

and supporting inter-VM sharing. One can also consider a VM-aware power budgeting scheme using multiple 

managers integrated to achieve better power management. The power budgeting policies cannot ignore the 

heterogeneity problems. Consequently, one must address the trade-off of power saving and data-center performance. 

 

Virtual Storage Management 

 

The term ―storage virtualization‖ was widely used before the renaissance of system virtualization. Yet the term has 

a different meaning in a system virtualization environment. Previously, storage virtualization was largely used to 

describe the aggregation and repartitioning of disks at very coarse time scales for use by physical machines. In 

system virtualization, virtual storage includes the storage managed by VMMs and guest 

 

 

OSes. Generally, the data stored in this environment can be classified into two categories: VM images and 

application data. The VM images are special to the virtual environment, while application data includes all other 

data which is the same as the data in traditional OS environments. The most important aspects of system 

virtualization are encapsulation and isolation. 

 

Traditional operating systems and applications running on them can be encapsulated in VMs. Only one operating 

system runs in a virtualization while many applications run in the operating system. System virtualization allows 

multiple VMs to run on a physical machine and the VMs are completely isolated. To achieve encapsulation and 

isolation, both the system software and the hardware platform, such as CPUs and chipsets, are rapidly updated. 

However, storage is lagging. The storage systems become the main bottleneck of VM deployment. 

 

In virtualization environments, a virtualization layer is inserted between the hardware and traditional operating 

systems or a traditional operating system is modified to support virtualization. This procedure complicates storage 

operations. On the one hand, storage management of the guest OS performs as though it is operating in a real hard 

disk while the guest OSes cannot access the hard disk directly. On the other hand, many guest OSes contest the hard 

disk when many VMs are running on a single physical machine. Therefore, storage management of the underlying 

VMM is much more complex than that of guest OSes (traditional OSes). 

 

In addition, the storage primitives used by VMs are not nimble. Hence, operations such as remapping volumes 

across hosts and checkpointing disks are frequently clumsy and esoteric, and sometimes simply unavailable. In data 

centers, there are often thousands of VMs, which cause the VM images to become flooded. Many researchers tried 

to solve these problems in virtual storage management. The main purposes of their research are to make 

management easy while enhancing performance and reducing the amount of storage occupied by the VM images. 
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Parallax is a distributed storage system customized for virtualization environments. Content Addressable Storage 

(CAS) is a solution to reduce the total size of VM images, and therefore supports a large set of VM-based systems in 

data centers. 

 

Since traditional storage management techniques do not consider the features of storage in virtualization 

environments, Parallax designs a novel architecture in which storage features that have traditionally been 

implemented directly on high-end storage arrays and switchers are relocated into a federation of storage VMs. These 
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storage VMs share the same physical hosts as the VMs that they serve. It provides an overview of the Parallax 

system architecture. It supports all popular system virtualization techniques, such as para virtualization and full 

virtualization. For each physical machine, Parallax customizes a special storage appliance VM. The storage 

appliance VM acts as a block virtualization layer between individual VMs and the physical storage device. It 

provides a virtual disk for each VM on the same physical machine. 

 

 

UNIT IV 

 

OPEN SOURCE GRID MIDDLEWARE PACKAGES 

 

As reviewed in Berman, Fox, and Hey , many software, middleware, and programming environments have been 

developed for grid computing over past 15 years. Below we assess their relative strength and limitations based on 

recently reported applications. We first introduce some grid standards and popular APIs. Then we present the 

desired software support and middleware developed for grid computing includesfour grid middleware packages. 

 

Grid Software Support and Middleware Packages 

 

BOINC Berkeley Open Infrastructure for Network Computing. 

 

UNICORE Middleware developed by the German grid computing community. 

 

Globus (GT4) A middleware library jointly developed by Argonne National Lab., Univ. of Chicago, and USC 

Information Science Institute, funded by DARPA, NSF, and NIH. CGSP in 

 

ChinaGrid 

 

The CGSP (ChinaGrid Support Platform) is a middleware library developed by 20 top universities in China as part 

of the ChinaGrid Project . 

Condor-G Originally developed at the Univ. of Wisconsin for general distributed computing, and later extended to 

Condor-G for grid job management. . 

 

Sun Grid Engine (SGE) 

 

Developed by Sun Microsystems for business grid applications. Applied to private grids and local clusters within 

enterprises or campuses. 

Grid Standards and APIs 

 

Grid standards have been developed over the years. The Open Grid Forum (formally Global Grid Forum) and Object 

Management Group are two well-formed organizations behind those standards. We have already introduced the 

OGSA (Open Grid Services Architecture) in standards including the GLUE for resource representation, SAGA 

(Simple API for Grid Applications), GSI (Grid Security Infrastructure), OGSI (Open Grid Service Infrastructure), 

and WSRE (Web Service Resource Framework). 

 

 

The grid standards have guided the development of several middleware libraries and API tools for grid computing. 

They are applied in both research grids and production grids today. Research grids tested include the EGEE, France 

Grilles, D-Grid (German), CNGrid (China), TeraGrid (USA), etc. Production grids built with the standards include 

the EGEE, INFN grid (Italian), NorduGrid, Sun Grid, Techila, and Xgrid . We review next the software 

environments and middleware implementations based on these standards. 
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Software Support and Middleware 

 

Grid middleware is specifically designed a layer between hardware and the software. The middleware products 

enable the sharing of heterogeneous resources and managing virtual organizations created around the grid. 

Middleware glues the allocated resources with specific user applications. Popular grid middleware tools include the 

Globus Toolkits (USA), gLight, UNICORE (German), BOINC (Berkeley), CGSP (China), Condor-G, and Sun Grid 
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Engine, etc. summarizes the grid software support and middleware packages developed for grid systems since 1995. 

In subsequent sections, we will describe the features in Condor-G, SGE, GT4, and CGSP. 

 

THE GLOBUS TOOLKIT ARCHITECTURE (GT4) 

 

The Globus Toolkit, started in 1995 with funding from DARPA, is an open middleware library for the grid 

computing communities. These open source software libraries support many operational grids and their applications 

on an international basis. The toolkit addresses common problems and issues related to grid resource discovery, 

management, communication, security, fault detection, and portability. The software itself provides a variety of 

components and capabilities. The library includes a rich set of service implementations. The implemented software 

supports grid infrastructure management, provides tools for building new web services in Java, C, and Python, 

builds a powerful standard-based security infrastructure and client APIs (in different languages), and offers 

comprehensive command-line programs for accessing various grid services. The Globus Toolkit was initially 

motivated by a desire to remove obstacles that prevent seamless collaboration, and thus sharing of resources and 

services, in scientific and engineering applications. The shared resources can be computers, storage, data, services, 

networks, science instruments (e.g., sensors), and so on. The Globus library version GT4. Globus Tookit GT4 

supports distributed and cluster computing services. Courtesy of I. Foster 

 

The GT4 Library 

 

GT4 offers the middle-level core services in grid applications. The high-level services and tools, such as MPI, 

Condor-G, and Nirod/G, are developed by third parties for general-purpose distributed computing applications. The 

local services, such as LSF, TCP, Linux, and Condor, are at the bottom level and are fundamental tools supplied by 

other developers summarizes GT4’s core grid services by module name. Essentially, these functional modules 

 

 

help users to discover available resources, move data between sites, manage user credentials, and so on. As a de 

facto standard in grid middleware, GT4 is based on industry-standard web service technologies. 

 

Functional Modules in Globus GT4 Library 

 

Service Functionality Module Name Functional Description 

 

Global Resource Allocation Manager GRAM Grid Resource Access and Management (HTTP-based) 

Communication Nexus Unicast and multicast communication 

Grid Security Infrastructure GSI Authentication and related security services 

 

Monitory and Discovery Service MDS Distributed access to structure and state information 

Health and Status HBM Heartbeat monitoring of system components 

Global Access of Secondary Storage GASS Grid access of data in remote secondary storage 

Grid File Transfer GridFTP Inter-node fast file transfer 

Nexus is used for collective communications and HBM for heartbeat monitoring of resource nodes. GridFTP is for 

speeding up internode file transfers. The module GASS is used for global access of secondary storage. More details 

of the functional modules of Globus GT4 and their applications are available at www.globus.org/toolkit/. 

Globus Job Workflow 

 

The typical job workflow when using the Globus tools. A typical job execution sequence proceeds as follows: The 

http://www.globus.org/toolkit/
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user delegates his credentials to a delegation service. The user submits a job request to GRAM with the delegation 

identifier as a parameter. GRAM parses the request, retrieves the user proxy certificate from the delegation service, 

and then acts on behalf of the user. GRAM sends a transfer request to the RFT (Reliable File Transfer), which 

applies GridFTP to bring in the necessary files. GRAM invokes a local scheduler via a GRAM adapter and the SEG 

(Scheduler Event Generator) initiates a set of user jobs. The local scheduler reports the job state to the SEG. Once 

the job is complete, GRAM uses RFT and GridFTP to stage out the resultant files. The grid monitors the progress of 

these operations and sends the user a notification when they succeed, fail, or are delayed. 
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Globus job workflow among interactive functional modules. 

 

Client-Globus Interactions 

 

 

GT4 service programs are designed to support user applications .There are strong interactions between provider 

programs and user code. GT4 makes heavy use of industry-standard web service protocols and mechanisms in 

service description, discovery, access, authentication, authorization, and the like. GT4 makes extensive use of Java, 

C, and Python to write user code. Web service mechanisms define specific interfaces for grid computing. Web 

services provide flexible, extensible, and widely adopted XML-based interfaces. 

 

Client and GT4 server interactions; vertical boxes correspond to service programs and horizontal boxes represent the 

user codes. Courtesy of Foster and Kesselman GT4 components do not, in general, address end-user needs directly. 

Instead, GT4 provides a set of infrastructure services for accessing, monitoring, managing, and controlling access to 

infrastructure elements. The server code in the vertical boxes in corresponds to 15 grid services that are in heavy use 

in the GT4 library. These demand computational, communication, data, and storage resources. We must enable a 

range of end-user tools that provide the higher-level capabilities needed in specific user applications. Wherever 

possible, GT4 implements standards to facilitate construction of operable and reusable user code. Developers can 

use these services and libraries to build simple and complex systems quickly. 

 

A high-security subsystem addresses message protection, authentication, delegation, and authorization. Comprising 

both a set of service implementations (server programs at the bottom of Figure 7.21) and associated client libraries at 

the top, GT4 provides both web services and non-WS applications. The horizontal boxes in the client domain denote 

custom applications and/or third-party tools that access GT4 services. The toolkit programs provide a set of useful 

infrastructure services. Globus container serving as a runtime environment for implementing web services in a grid 

platform. Courtesy of Foster and Kesselman Three containers are used to host user-developed services written in 

Java, Python, and C, respectively. These containers provide implementations of security, management, discovery, 

state management, and other mechanisms frequently required when building services. They extend open source 

service hosting environments with support for a range of useful web service specifications, including WSRF, WS- 

Notification, and WS-Security. A set of client libraries allow client programs in Java, C, and Python to invoke 

operations on both GT4 and user-developed services. In many cases, multiple interfaces provide different levels of 

control: For example, in the case of GridFTP, there is not only a simple command-line client (globus-url-copy) but 

also control and data channel libraries for use in programs—and the XIO library allowing for the integration of 

alternative transports. The use of uniform abstractions and mechanisms means clients can interact with different 

services in similar ways, which facilitates construction of complex, interoperable systems and encourages code reuse 

Parallel Computing and Programming Paradigms 

 

Consider a distributed computing system consisting of a set of networked nodes or workers. The system issues for 

running a typical parallel program in either a parallel or a distributed manner would include the following : 

 

 

• Partitioning This is applicable to both computation and data as follows: 

 

• Computation partitioning This splits a given job or a program into smaller tasks. Partitioning greatly depends on 

correctly identifying portions of the job or program that can be performed concurrently. In other words, upon 

identifying parallelism in the structure of the program, it can be divided into parts to be run on different workers. 

Different parts may process different data or a copy of the same data. 

 

• Data partitioning This splits the input or intermediate data into smaller pieces.Similarly, upon identification of 

parallelism in the input data, it can also be divided into pieces to be processed on different workers. Data pieces may 

be processed by different parts of a program or a copy of the same program. 



 

NARAYANA ENGINEERING COLLEGE::GUDUR                          Prepared By Mr.U.Satyanarayana 

 

 

• Mapping This assigns the either smaller parts of a program or the smaller pieces of data to underlying resources.  

This process aims to appropriately assign such parts or pieces to be run simultaneously on different workers and is 

usually handled by resource allocators in the system. 
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• Synchronization Because different workers may perform different tasks, synchronization and coordination among 

workers is necessary so that race conditions are prevented and data dependency among different workers is properly 

managed. 

 

Multiple accesses to a shared resource by different workers may raise race conditions, whereas data dependency 

happens when a worker needs the processed data of other workers. 

• Communication Because data dependency is one of the main reasons for communication among workers, 

communication is always triggered when the intermediate data is sent to workers. 

 

• Scheduling For a job or program, when the number of computation parts (tasks) or data pieces is more than the 

number of available workers, a scheduler selects a sequence of tasks or data pieces to be assigned to the workers. It 

is worth noting that the resource allocator performs the actual mapping of the computation or data pieces to workers, 

while the scheduler only picks the next part from the queue of unassigned tasks based on a set of rules called the 

scheduling policy. For multiple jobs or programs, a scheduler selects a sequence of jobs or programs to be run on the 

distributed computing system. In this case, scheduling is also necessary when system resources are not sufficient to 

simultaneously run multiple jobs or programs. 

 

Motivation for Programming Paradigms 

 

Because handling the whole data flow of parallel and distributed programming is very time-consuming and requires 

specialized knowledge of programming, dealing with these issues may affect the productivity of the programmer 

and may even result in affecting the program’s time to market. Furthermore, it may detract the programmer from 

concentrating on the logic of 

 

 

the program itself. Therefore, parallel and distributed programming paradigms or models are offered to abstract 

many parts of the data flow from users. 

 

In other words, these models aim to provide users with an abstraction layer to hide implementation details of the 

data flow which users formerly ought to write codes for. Therefore, simplicity of writing parallel programs is an 

important metric for parallel and distributed programming paradigms. Other motivations behind parallel and 

distributed programming models are (1) to improve productivity of programmers, (2) to decrease programs’ time to 

market, (3) to leverage underlying resources more efficiently, (4) to increase system throughput, and (5) to support 

higher levels of abstraction . 

 

MapReduce, Hadoop, and Dryad are three of the most recently proposed parallel and distributed programming 

models. They were developed for information retrieval applications but have been shown to be applicable for a 

variety of important applications . Further, the loose coupling of components in these paradigms makes them 

suitable for VM implementation and leads to much better fault tolerance and scalability for some applications than 

traditional parallel computing models such as MPI . 

 

MapReduce, Twister, and Iterative MapReduce 

 

MapReduce, is a software framework which supports parallel and distributed computing on large data sets . This 

software framework abstracts the data flow of running a parallel program on a distributed computing system by 

providing users with two interfaces in the form of two functions: 

 

Map and Reduce. Users can override these two functions to interact with and manipulate the data flow of running 

their programs illustrates the logical data flow from the Map to the Reduce function in MapReduce frameworks. In 

this framework, the ―value‖ part of the data, (key, value), is the actual data, and the ―key‖ part is only used by the 

MapReduce controller to control the data flow . 

 



 

NARAYANA ENGINEERING COLLEGE::GUDUR                          Prepared By Mr.U.Satyanarayana 

 

Formal Definition of MapReduce 

 

The MapReduce software framework provides an abstraction layer with the data flow and flow of control to users, 

and hides the implementation of all data flow steps such as data partitioning, mapping, synchronization, 

communication, and scheduling. Here, although the data flow in such frameworks is predefined, the abstraction 

layer provides two well-defined interfaces in the form of two functions: Map and Reduce . These two main functions 

can be overridden by the user to achieve specific objectives the MapReduce framework with data flow and control 
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flow.Therefore, the user overrides the Map and Reduce functions first and then invokes the provided MapReduce 

(Spec, & Results) function from the library to start the flow of data. The MapReduce function, MapReduce (Spec, & 

Results), takes an important parameter which is a specification object, the Spec. This object is first initialized inside 

the user’s program, and then 

 

 

the user writes code to fill it with the names of input and output files, as well as other optional tuning parameters. 

This object is also filled with the name of the Map and Reduce functions to identify these user-defined functions to 

the MapReduce library. 

 

The overall structure of a user’s program containing the Map, Reduce, and the Main functions is given below. The 

Map and Reduce are two major subroutines. They will be called to implement the desired function performed in the 

main program. 

 

Map Function (… . ) 

 

{ 

 

… … 

 

} 

 

Reduce Function (… . ) 

 

{ 

 

… … 

 

} 

 

Main Function (… . ) 

 

{ 

 

Initialize Spec object 

 

… … 

 

MapReduce (Spec, & Results) 

 

} 

 

MapReduce Logical Data Flow 

 

The input data to both the Map and the Reduce functions has a particular structure. This also pertains for the output 

data. The input data to the Map function is in the form of a (key, value) pair. For example, the key is the line offset 

within the input file and the value is the content of the line. The output data from the Map function is structured as 

(key, value) pairs called intermediate (key, value) pairs. In other words, the user-defined Map function processes 

each input (key, value) pair and produces a number of (zero, one, or more) intermediate (key, value) pairs. Here, the 

goal is to process all input (key, value) pairs to the Map function in parallel . 

 

 

MapReduce logical data flow in 5 processing stages over successive (key, value) pairs. In turn, the Reduce function 

receives the intermediate (key, value) pairs in the form of a group of intermediate values associated with one 
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intermediate key, (key, [set of values]). In fact, the MapReduce framework forms these groups by first sorting the 

intermediate (key, value) pairs and then grouping values with the same key. It should be noted that the data is sorted 

to simplify the grouping process. The Reduce function processes each (key, [set of values]) group and produces a set 

of (key, value) pairs as output. To clarify the data flow in a sample MapReduce application, one of the well-known 

 

MapReduce problems, namely word count, to count the number of occurrences of each word in a collection of 

documents is presented here demonstrates the data flow of the word-count problem for a simple input file containing 
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only two lines as follows: (1) ―most people ignore most poetry‖ and (2) ―most poetry ignores most people.‖ In this 

case, the Map function simultaneously produces a number of intermediate (key, value) pairs for each line of content 

so that each word is the intermediate key with 1 as its intermediate value; for example, (ignore, 1). Then the 

MapReduce library collects all the generated intermediate (key, value) pairs and sorts them to group the 1’s for 

identical words; for example, (people, [1,1]). Groups are then sent to the Reduce function in parallel so that it can 

sum up the 1 values for each word and generate the actual number of occurrence for each word in the file; for 

example, (people, 2). 

 

The data flow of a word-count problem using the MapReduce functions (Map, Sort, Group and Reduce) in a cascade 

operations. 

 

Formal Notation of MapReduce Data Flow 

 

The Map function is applied in parallel to every input (key, value) pair, and produces new set of intermediate (key, 

value) pairs as follows: 

Then the MapReduce library collects all the produced intermediate (key, value) pairs from all input (key, value) 

pairs, and sorts them based on the ―key‖ part. It then groups the values of all occurrences of the same key. Finally, 

the Reduce function is applied in parallel to each group producing the collection of values as output as illustrated 

here: 

 

Strategy to Solve MapReduce Problems 

 

As mentioned earlier, after grouping all the intermediate data, the values of all occurrences of the same key are 

sorted and grouped together. As a result, after grouping, each key becomes unique in all intermediate data. 

Therefore, finding unique keys is the starting point to solving a typical MapReduce problem. Then the intermediate 

(key, value) pairs as the output of the Map function will be automatically found. The following three examples 

explain how to define keys and values in such problems: 

 

 

Problem 1: Counting the number of occurrences of each word in a collection ofdocuments 

Solution: unique ―key‖: each word, intermediate ―value‖: number of occurrences 

Problem 2: Counting the number of occurrences of words having the same size, or the same number of letters, in a 

collection of documents 

 

Solution: unique ―key‖: each word, intermediate ―value‖: size of the word 

 

Problem 3: Counting the number of occurrences of anagrams in a collection of documents. Anagrams are words 

with the same set of letters but in a different order (e.g., the words ―listen‖ and ―silent‖). 

 

Solution: unique ―key‖: alphabetically sorted sequence of letters for each word (e.g., eilnst‖), intermediate ―value‖: 

number of occurrences 

 

MapReduce Actual Data and Control Flow 

 

The main responsibility of the MapReduce framework is to efficiently run a user’s program on a distributed  

computing system. Therefore, the MapReduce framework meticulously handles all partitioning, mapping, 

synchronization, communication, and scheduling details of such data flows . We summarize this in the following 

distinct steps: 

 

1. Data partitioning The MapReduce library splits the input data (files), already stored in GFS, into M pieces that 

also correspond to the number of map tasks. 
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2. Computation partitioning This is implicitly handled (in the MapReduce framework) byobliging users to write 

their programs in the form of the Map and Reduce functions. therefore, the MapReduce library only generates copies 

of a user program (e.g., by a fork system call) containing the Map and the Reduce functions, distributes them, and 

starts them up on a number of available computation engines. 
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3. Determining the master and workers The MapReduce architecture is based on a master-worker model. Therefore, 

one of the copies of the user program becomes the master and the rest become workers. The master picks idle 

workers, and assigns the map and reduce tasks to them. A map/reduce worker is typically a computation engine such 

as a cluster node to run map/reduce tasks by executing Map/Reduce functions. Steps 4–7 describe the map workers. 

 

4. Reading the input data (data distribution) Each map worker reads its corresponding portion of the input data, 

namely the input data split, and sends it to its Map function. Although a map worker may run more than one Map 

function, which means it has been assigned more than one input data split, each worker is usually assigned one input 

split only. 

 

5. Map function Each Map function receives the input data split as a set of (key, value) pairs to process and produce 

the intermediated (key, value) pairs. 

 

 

6. Combiner function This is an optional local function within the map worker which applies to intermediate (key, 

value) pairs. The user can invoke the Combiner function inside the user program. The Combiner function runs the 

same code written by users for the Reduce function as its functionality is identical to it. The Combiner function 

merges the local data of each map worker before sending it over the network to effectively reduce its 

communication costs. As mentioned in our discussion of logical data flow, the MapReduce framework sorts and 

groups the data before it is processed by the Reduce function. Similarly, the MapReduce framework will also sort 

and group the local data on each map worker if the user invokes the Combiner function. 

 

7. Partitioning function As mentioned in our discussion of the MapReduce data flow, the intermediate (key, value) 

pairs with identical keys are grouped together because all values inside each group should be processed by only one 

Reduce function to generate the final result. However, in real implementations, since there are M map and R reduce 

tasks, intermediate (key, value) pairs with the same key might be produced by different map tasks, although they 

should be grouped and processed together by one Reduce function only. 

 

Therefore, the intermediate (key, value) pairs produced by each map worker are partitioned into R regions, equal to 

the number of reduce tasks, by the Partitioning function to guarantee that all (key, value) pairs with identical keys 

are stored in the same region. As a result, since reduce worker i reads the data of region i of all map workers, all 

(key, value) pairs with the same key will be gathered by reduce worker I accordingly . To implement this technique, 

a Partitioning function could simply be a hash function (e.g., Hash(key) mod R) that forwards the data into particular 

regions. It is also worth noting that the locations of the buffered data in these Rpartitions are sent to the master for 

later forwarding of data to the reduce workers shows the data flow implementation of all data flow steps. The 

following are two networking steps: 

 

8. Synchronization MapReduce applies a simple synchronization policy to coordinate map workers with reduce 

workers, in which the communication between them starts when all map tasks finish. 

 

9. Communication Reduce worker i, already notified of the location of region i of all mapworkers, uses a remote 

procedure call to read the data from the respective region of all map workers. Since all reduce workers read the data 

from all map workers, all-to-all communication among all map and reduce workers, which incurs network 

congestion, occurs in the network. This issue is one of the major bottlenecks in increasing the performance of such 

systems . A data transfer module was proposed to schedule data transfers independently .Steps 10 and 11 correspond 

to the reduce worker domain: 

 

10. Sorting and Grouping When the process of reading the input data is finalized by a reduce worker, the data is 

initially buffered in the local disk of the reduce worker. Then the reduce worker groups intermediate (key, value) 

pairs by sorting the data based on their keys, followed by grouping all occurrences of identical keys. Note that the 

buffered data is sorted and grouped 
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because the number of unique keys produced by a map worker may be more than R regions in which more than one 

key exists in each region of a map worker . 

 

1. Reduce function The reduce worker iterates over the grouped (key, value) pairs, and for each unique key, it sends 

the key and corresponding values to the Reduce function. 
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Then this function processes its input data and stores the output results in predetermined files in the user’s program. 

 

Use of MapReduce partitioning function to link the Map and Reduce workers. 

 

To better clarify the interrelated data control and control flow in the MapReduce framework, shows the exact order 

of processing control in such a system contrasting with dataflow. Data flow implementation of many functions in the 

Map workers and in the Reduce workers through multiple sequences of partitioning, combining, synchronization 

and communication, sorting and grouping, and reduce operations. 

 

Control flow implementation of the MapReduce functionalities in Map workers and Reduce workers (running user 

programs) from input files to the output files under the control of the master user program. Courtesy of Yahoo! Pig 

Tutorial 

 

Compute-Data Affinity 

 

The MapReduce software framework was first proposed and implemented by Google. The first implementation was 

coded in C. The implementation takes advantage of GFS as the underlying layer. MapReduce could perfectly adapt 

itself to GFS. GFS is a distributed file system where files are divided into fixed-size blocks (chunks) and blocks are 

distributed and stored on cluster nodes. As stated earlier, the MapReduce library splits the input data (files) into 

fixed-size blocks, and ideally performs the Map function in parallel on each block. In this case, as GFS has already 

stored files as a set of blocks, the MapReduce framework just needs to send a copy of the user’s program containing 

the Map function to the nodes’ already stored data blocks. This is the notion of sending computation toward data 

rather than sending data toward computation. Note that the default GFS block size is 64 MB which is identical to 

that of the MapReduce framework. 

 

Twister and Iterative MapReduce 

 

It is important to understand the performance of different runtimes and, in particular, to compare MPI and 

MapReduce . The two major sources of parallel overhead are load imbalance and communication (which is 

equivalent to synchronization overhead as communication synchronizes parallel units [threads or processes] in 

Categories 2 and 6 ). The communication overhead in MapReduce can be quite high, for two reasons: 

 

• MapReduce reads and writes via files, whereas MPI transfers information directly between nodes over the 

network. 

 

 

• MPI does not transfer all data from node to node, but just the amount needed to update information. We can call 

the MPI flow δ flow and the MapReduce flow full data flow. 

 

The same phenomenon is seen in all ―classic parallel‖ loosely synchronous applications which typically exhibit an 

iteration structure over compute phases followed by communication phases. We can address the performance issues 

with two important changes: 

 

1. Stream information between steps without writing intermediate steps to disk. 

 

2. Use long-running threads or processors to communicate the δ (between iterations) flow. 

 

These changes will lead to major performance increases at the cost of poorer fault tolerance and ease to support 

dynamic changes such as the number of available nodes. 

 

This concept has been investigated in several projects while the direct idea of using MPI for MapReduce 

applications is investigated in . The Twister programming paradigm and its implementation architecture at run time 

are illustrated whose performance results for K means are shown in Figure 6.8 [55,56], where Twister is much faster 

than traditional MapReduce. Twister distinguishes the static data which is never reloaded from the dynamic δ flow 
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that is communicated. 

 

Twister: An iterative MapReduce programming paradigm for repeated MapReduce execution 

 

HADOOP LIBRARY FROM APACHE 
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Hadoop is an open source implementation of MapReduce coded and released in Java (rather than C) by Apache. The 

Hadoop implementation of MapReduce uses the Hadoop Distributed File System (HDFS) as its underlying layer 

rather than GFS. The Hadoop core is divided into two fundamental layers: the MapReduce engine and HDFS. The 

MapReduce engine is the computation engine running on top of HDFS as its data storage manager. The following 

two sections cover the details of these two fundamental layers. 

 

HDFS: HDFS is a distributed file system inspired by GFS that organizes files and stores their data on a distributed 

computing system. 

 

HDFS Architecture: HDFS has a master/slave architecture containing a single NameNode as the master and a 

number of DataNodes as workers (slaves). To store a file in this architecture, HDFS splits the file into fixed-size 

blocks (e.g., 64 MB) and stores them on workers (DataNodes). The mapping of blocks to DataNodes is determined 

by the NameNode. The NameNode (master) also manages the file system’s metadata and namespace. In such 

systems, the namespace is the area maintaining the metadata, and metadata refers to all the information stored by a 

file system that is needed for overall management of all files. For example, NameNode in the metadata stores all 

information regarding the location of input splits/blocks in all DataNodes. Each DataNode, 

 

 

usually one per node in a cluster, manages the storage attached to the node. Each DataNode is responsible for storing 

and retrieving its file blocks . 

 

HDFS Features: Distributed file systems have special requirements, such as performance, scalability, concurrency 

control, fault tolerance, and security requirements , to operate efficiently. However, because HDFS is not a general- 

purpose file system, as it only executes specific types of applications, it does not need all the requirements of a 

general distributed file system. For example, security has never been supported for HDFS systems. The following 

discussion highlights two important characteristics of HDFS to distinguish it from other generic distributed file 

systems . 

 

HDFS Fault Tolerance: One of the main aspects of HDFS is its fault tolerance characteristic. Since Hadoop is 

designed to be deployed on low-cost hardware by default, a hardware failure in this system is considered to be 

common rather than an exception. Therefore, Hadoop considers the following issues to fulfill reliability 

requirements of the file system : 

 

• Block replication To reliably store data in HDFS, file blocks are replicated in this system. In other words, HDFS 

stores a file as a set of blocks and each block is replicated and distributed across the whole cluster. The replication 

factor is set by the user and is three by default. 

 

• Replica placement The placement of replicas is another factor to fulfill the desired fault tolerance in HDFS. 

Although storing replicas on different nodes (DataNodes) located in different racks across the whole cluster provides 

more reliability, it is sometimes ignored as the cost of communication between two nodes in different racks is 

relatively high in comparison with that of different nodes located in the same rack. Therefore, sometimes HDFS 

compromises its reliability to achieve lower communication costs. For example, for the default replication factor of 

three, HDFS stores one replica in the same node the original data is stored, one replica on a different node but in the 

same rack, and one replica on a different node in a different rack to provide three copies of the data . 

 

• Heartbeat and Blockreport messages Heartbeats and Blockreports are periodic messages sent to the NameNode by 

each DataNode in a cluster. Receipt of a Heartbeat implies that the DataNode is functioning properly, while each 

Blockreport contains a list of all blocks on a DataNode. The NameNode receives such messages because it is the 

sole decision maker of all replicas in the system. 

 

HDFS High-Throughput Access to Large Data Sets (Files): Because HDFS is primarilydesigned for batch 

processing rather than interactive processing, data access throughput in HDFS is more important than latency. Also, 
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because applications run on HDFS typically have large data sets, individual files are broken into large blocks (e.g., 

64 MB) to allow HDFS to decrease the amount of metadata storage required per file. This provides two advantages: 

The list of blocks per file will shrink as the size of individual blocks increases, and by keeping large amounts of data 

sequentially within a block, HDFS provides fast streaming reads of data. 
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HDFS Operation: The control flow of HDFS operations such as write and read can properly highlight roles of the 

NameNode and DataNodes in the managing operations. In this section, the control flow of the main operations of 

HDFS on files is further described to manifest the interaction between the user, the NameNode, and the DataNodes 

in such systems . 

 

• Reading a file To read a file in HDFS, a user sends an ―open‖ request to the NameNode to get the location of file 

blocks. For each file block, the NameNode returns the address of a set of DataNodes containing replica information 

for the requested file. The number of addresses depends on the number of block replicas. Upon receiving such 

information, the user calls the read function to connect to the closest DataNode containing the first block of the file. 

After the first block is streamed from the respective DataNode to the user, the established connection is terminated 

and the same process is repeated for all blocks of the requested file until the whole file is streamed to the user. 

 

• Writing to a file To write a file in HDFS, a user sends a ―create‖ request to the NameNode to create a new file in 

the file system namespace. If the file does not exist, the NameNode notifies the user and allows him to start writing 

data to the file by calling the write function. The first block of the file is written to an internal queue termed the data 

queue while a data streamer monitors its writing into a DataNode. Since each file block needs to be replicated by a 

predefined factor, the data streamer first sends a request to the NameNode to get a list of suitable DataNodes to store 

replicas of the first block. 

 

The steamer then stores the block in the first allocated DataNode. Afterward, the block is forwarded to the second 

DataNode by the first DataNode. The process continues until all allocated DataNodes receive a replica of the first 

block from the previous DataNode. 

 

Once this replication process is finalized, the same process starts for the second block and continues until all blocks 

of the file are stored and replicated on the file system. 

 

Architecture of MapReduce in Hadoop 

 

The topmost layer of Hadoop is the MapReduce engine that manages the data flow and control flow of MapReduce 

jobs over distributed computing systems shows the MapReduce engine architecture cooperating with HDFS. Similar 

to HDFS, the MapReduce engine also has a master/slave architecture consisting of a single JobTracker as the master 

and a number of TaskTrackers as the slaves (workers). The JobTracker manages the MapReduce job over a cluster 

and is responsible for monitoring jobs and assigning tasks to TaskTrackers. The TaskTracker manages the execution 

of the map and/or reduce tasks on a single computation node in the cluster. HDFS and MapReduce architecture in 

Hadoop where boxes with different shadings refer to different functional nodes applied to different blocks of data. 

 

Each TaskTracker node has a number of simultaneous execution slots, each executing either a map or a reduce task. 

Slots are defined as the number of simultaneous threads supported by 

 

CPUs of the TaskTracker node. For example, a TaskTracker node with N CPUs, each supporting M threads, has M * 

N simultaneous execution slots . It is worth noting that each data block is processed by one map task running on a 

single slot. Therefore, there is a one-to-one correspondence between map tasks in a TaskTracker and data blocks in 

the respective DataNode. 

 

Running a Job in Hadoop 

 

Three components contribute in running a job in this system: a user node, a JobTracker, and several TaskTrackers. 

The data flow starts by calling the runJob(conf) function inside a user program running on the user node, in which 

conf is an object containing some tuning parameters for the MapReduce framework and HDFS. The runJob(conf) 

function and conf are comparable to the MapReduce(Spec, &Results) function and Spec in the first implementation 

of MapReduce by Google, depicts the data flow of running a MapReduce job in Hadoop . Data flow in running a 

MapReduce job at various task trackers using the Hadoop library. 

 

• Job Submission Each job is submitted from a user node to the JobTracker node that might be situated in a different 



 

NARAYANA ENGINEERING COLLEGE::GUDUR                          Prepared By Mr.U.Satyanarayana 

 

node within the cluster through the followingprocedure: 

 

• A user node asks for a new job ID from the JobTracker and computes input file splits. 

 

• The user node copies some resources, such as the job’s JAR file, configuration file,and computed input splits, to 

the JobTracker’s file system. 



 

NARAYANA ENGINEERING COLLEGE::GUDUR                          Prepared By Mr.U.Satyanarayana 

 

• The user node submits the job to the JobTracker by calling the submitJob() function. 

 

• Task assignment The JobTracker creates one map task for each computed input split by the user node and assigns 

the map tasks to the execution slots of the TaskTrackers. 

 

The JobTracker considers the localization of the data when assigning the map tasks to the TaskTrackers. The 

JobTracker also creates reduce tasks and assigns them to the TaskTrackers. The number of reduce tasks is 

predetermined by the user, and there is no locality consideration in assigning them. 

 

• Task execution The control flow to execute a task (either map or reduce) starts inside the TaskTracker by copying 

the job JAR file to its file system. Instructions inside the job JAR file are executed after launching a Java Virtual 

Machine (JVM) to run its map or reduce task. 

 

• Task running check A task running check is performed by receiving periodic heartbeat messages to the JobTracker 

from the TaskTrackers. Each heartbeat notifies the JobTracker that the sending TaskTracker is alive, and whether 

the sending TaskTracker is ready to run a new task. 
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UNIT III 
 

CLOUD COMPUTING AND SERVICE MODELS 
 

Cloud computing benefits the service industry most and advances business computing with a 

new paradigm. In 2009, the global cloud service marketplace reached $17.4 billion. IDC 

predicted in 2010 that the cloud-based economy may increase to $44.2 billion by 2013. 

Users can access and deploy cloud applications from anywhere in the world at very competitive 

costs. Virtualized cloud platforms are often built on top of large data centers. clouds aim to 

power the next generation of data centers by architecting them as virtual resources over 

automated hardware, databases, user interfaces, and application environments. 

Public, Private, and Hybrid Clouds 
 

The concept of cloud computing has evolved from cluster, grid, and utility computing. Cluster 

and grid computing leverage the use of many computers in parallel to solve problems of any size. 

The cloud computing model enables users to share access to resources from anywhere at any 

time through their connected devices. 

In this scenario, the computations (programs) are sent to where the data is located, rather than 

copying the data to millions of desktops as in the traditional approach. Cloud computing avoids 

large data movement, resulting in much better network bandwidth utilization. Furthermore, 

machine virtualization has enhanced resource utilization, increased application flexibility, and 

reduced the total cost of using virtualized data-center resources. Cloud computing applies a 

virtual platform with elastic resources put together by on-demand provisioning of hardware, 

software, and data sets, dynamically. The main idea is to move desktop computing to a service- 

oriented platform using server clusters and huge databases at data centers. 

Public Clouds 
 

A public cloud is built over the Internet and can be accessed by any user who has paid for the 

service. Public clouds are owned by service providers and are accessible through a subscription. 

Many public clouds are available, including Google App Engine (GAE), Amazon Web Services 
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(AWS), Microsoft Azure, IBM Blue Cloud, and Salesforce.com’s Force.com. A public cloud 

delivers a selected set of business processes. The application and infrastructure services are 

offered on a flexible price-per-use basis. 

Private Clouds 
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A private cloud is built within the domain of an intranet owned by a single organization. Private 

clouds give local users a flexible and agile private infrastructure to run service workloads within 

their administrative domains. A private cloud is supposed to deliver more efficient and 

convenient cloud services. It may impact the cloud standardization, while retaining greater 

customization and organizational control. 

Hybrid Clouds 
 

A hybrid cloud is built with both public and private clouds, Private clouds can also support a 

hybrid cloud model by supplementing local infrastructure with computing capacity from an 

external public cloud. A hybrid cloud provides access to clients, the partner network, and third 

parties. In summary, public clouds promote standardization, preserve capital investment, and 

offer application flexibility. Private clouds attempt to achieve customization and offer higher 

efficiency, resiliency, security, and privacy. Hybrid clouds operate in the middle, with many 

compromises in terms of resource sharing. 
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Infrastructure-as-a-Service (IaaS) 
 

Cloud computing delivers infrastructure, platform, and software (application) as services, which 

are made available as subscription-based services in a pay-as-you-go model to consumers. The 

services provided over the cloud can be generally categorized into three different service models: 

namely IaaS, Platform as a Service (PaaS), and Software as a Service (SaaS). All three models 

allow users to access services over the Internet, relying entirely on the infrastructures of cloud 

service providers. 
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These models are offered based on various SLAs between providers and users. In a broad sense, 

the SLA for cloud computing is addressed in terms of service availability, performance, and data 

protection and security. SaaS is applied at the application end using special interfaces by users or 
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clients. At the PaaS layer, the cloud platform must perform billing services and handle job 

queuing, launching, and monitoring services. At the bottom layer of the IaaS services, databases, 

compute instances, the file system, and storage must be provisioned to satisfy user demands. 

Infrastructure as a Service 
 

This model allows users to use virtualized IT resources for computing, storage, and networking. 

The user can deploy and run his applications over his chosen OS environment. The user does not 

manage or control the underlying cloud infrastructure, but has control over the OS, storage, 

deployed applications, and possibly select networking components. This IaaS model 

encompasses storage as a service, compute instances as a service, and communication as a 

service. The Virtual Private Cloud 
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(VPC) in Example 4.1 shows how to provide Amazon EC2 clusters and S3 storage to multiple 

users. GoGrid, FlexiScale, and Aneka are good examples. 

Platform as a Service (PaaS) 
 

To be able to develop, deploy, and manage the execution of applications using provisioned 

resources demands a cloud platform with the proper software environment. Such a platform 

includes operating system and runtime library support. This has triggered the creation of the 

PaaS model to enable users to develop and deploy their user applications 



 

NARAYANA ENGINEERING COLLEGE::GUDUR                          Prepared By Mr.U.Satyanarayana 

 

 



 

NARAYANA ENGINEERING COLLEGE::GUDUR                          Prepared By Mr.U.Satyanarayana 

 

 
 

Software as a Service (SaaS) 
 

This refers to browser-initiated application software over thousands of cloud customers. Services 

and tools offered by PaaS are utilized in construction of applications and management of their 

deployment on resources offered by IaaS providers. The SaaS model provides software 

applications as a service. As a result, on the customer side, there is no upfront investment in 

servers or software licensing. On the provider side, costs are kept rather low, compared with 

conventional hosting of user applications. The best examples of SaaS services include Google 

Gmail and docs, Microsoft SharePoint, and the CRM software from Salesforce.com. They are all 

very successful in promoting their own business. Providers such as Google and Microsoft offer 

integrated IaaS and PaaS services, whereas others such as Amazon and GoGrid offer pure IaaS 

services and expect third-party PaaS providers such as Manjrasoft to offer application 

development and deployment services on top of their infrastructure services. To identify 

important cloud applications in enterprises, the success stories of three real-life cloud 

applications for HTC, news media, and business transactions. 

IMPLEMENTATION LEVELS OF VIRTUALIZATION 
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Virtualization is a computer architecture technology by which multiple virtual machines (VMs) 

are multiplexed in the same hardware machine. The idea of VMs can be dated back to the 1960s 

[53]. The purpose of a VM is to enhance resource sharing by many users and improve computer 

performance in terms of resource utilization and application flexibility. Hardware resources 
 

(CPU, memory, I/O devices, etc.) or software resources (operating system and software libraries) 

can be virtualized in various functional layers. The idea is to separate the hardware from the 

software to yield better system efficiency. For example, computer users gained access to much 

enlarged memory space when the concept of virtual memory was introduced. Similarly, 

virtualization techniques can be applied to enhance the use of compute engines, networks, and 

storage. 

Levels of Virtualization Implementation 
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A traditional computer runs with a host operating system specially tailored for its hardware 

architecture. After virtualization, different user applications managed by their own operating 
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systems (guest OS) can run on the same hardware, independent of the host OS. This is often 

done by adding additional software, called a virtualization layer. This virtualization layer is 

known as hypervisor or virtual machine monitor (VMM) . The VMs are shown in the upper 

boxes, where applications run with their own guest OS over the virtualized CPU, memory, and 

I/O resources. The main function of the software layer for virtualization is to virtualize the 

physical hardware of a host machine into virtual resources to be used by the VMs, exclusively. 

The virtualization software creates the abstraction of VMs by interposing a virtualization layer at 

various levels of a computer system. Common virtualization layers include the instruction set 

architecture (ISA) level, hardware level, operating system level, library support level, and 

application level. 

Instruction Set Architecture Level 
 

At the ISA level, virtualization is performed by emulating a given ISA by the ISA of the host 

machine. For example, MIPS binary code can run on an x86-based host machine with the help of 

ISA emulation. With this approach, it is possible to run a large amount of legacy binary code 

written for various processors on any given new hardware host machine. Instruction set 

emulation leads to virtual ISAs created on any hardware machine. The basic emulation method is 

through code interpretation. An interpreter program interprets the source instructions to target 

instructions one by one. One source instruction may require tens or hundreds of native target 

instructions to perform its function. This approach translates basic blocks of dynamic source 

instructions to target instructions. The basic blocks can also be extended to program traces or 

super blocks to increase translation efficiency. A virtual instruction set architecture (V-ISA) thus 

requires adding a processor-specific software translation layer to the compiler. 

Hardware Abstraction Level 
 

Hardware-level virtualization is performed right on top of the bare hardware. On the one hand, 

this approach generates a virtual hardware environment for a VM. The idea is to virtualize a 

computer’s resources, such as its processors, memory, and I/O devices. The intention is to 

upgrade the hardware utilization rate by multiple users concurrently. The idea was implemented 

in the IBM VM/370 in the 1960s. More recently, the Xen hypervisor has been applied to 

virtualize x86-based machines to run Linux or other guest OS applications. 

Operating System Level 
 

This refers to an abstraction layer between traditional OS and user applications. OS-level 

virtualization creates isolated containers on a single physical server and the OS instances to 

utilize the hardware and software in data centers. The containers behave like real servers. OS- 

level virtualization is commonly used in creating virtual hosting environments to allocate 

hardware resources among a large number of mutually distrusting users. 

Library Support Level 
 

Most applications use APIs exported by user-level libraries rather than using lengthy system 
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calls by the OS. Since most systems provide well-documented APIs, such an interface becomes 

another candidate for virtualization. Virtualization with library interfaces is possible by 

controlling the communication link between applications and the rest of a system through API 

hooks. The software tool WINE has implemented this approach to support Windows applications 

on top of UNIX hosts. Another example is the vCUDA which allows applications executing 

within VMs to leverage GPU hardware acceleration. 
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User-Application Level 
 

Virtualization at the application level virtualizes an application as a VM. On a traditional OS, an 

application often runs as a process. Therefore, application-level virtualization is also known as 

process-level virtualization. The most popular approach is to deploy high level language (HLL) 

VMs. In this scenario, the virtualization layer sits as an application program on top of the 

operating system, and the layer exports an abstraction of a VM that can run programs written and 

compiled to a particular abstract machine definition. Other forms of application-level 

virtualization are known as application isolation, application sandboxing, or application 

streaming. The result is an application that is much easier to distribute and remove from user 

workstations. 

VMM Design Requirements and Providers 
 

As mentioned earlier, hardware-level virtualization inserts a layer between real hardware and 

traditional operating systems. This layer is commonly called the Virtual Machine Monitor 

(VMM) and it manages the hardware resources of a computing system. Each time programs 

access the hardware the VMM captures the process. In this sense, the VMM acts as a traditional 

OS. One hardware component, such as the CPU, can be virtualized as several virtual copies. 

Therefore, several traditional operating systems which are the same or different can sit on the 

same set of hardware simultaneously. 
 

There are three requirements for a VMM. First, a VMM should provide an environment for 

programs which is essentially identical to the original machine. Second, programs run in this 

environment should show, at worst, only minor decreases in speed. Third, a VMM should be in 
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complete control of the system resources. The hardware resource requirements, such as memory, 

of each VM are reduced, but the sum of them is greater than that of the real machine installed. 

The latter qualification is required because of the intervening level of software and the effect of 

any other VMs concurrently existing on the same hardware. 
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A VMM should demonstrate efficiency in using the VMs. Compared with a physical machine, 

no one prefers a VMM if its efficiency is too low. However, emulators or simulators are too slow 

to be used as real machines. To guarantee the efficiency of a VMM, a statistically dominant 

subset of the virtual processor’s instructions needs to be executed directly by the real processor, 

with no software intervention by the VMM , compares four hypervisors and VMMs that are in 

use today. 

Comparison of Four VMM and Hypervisor Software Packages Complete control of these 

resources by a VMM includes the following aspects: 

(1) The VMM is responsible for allocating hardware resources for programs; 
 

(2) it is not possible for a program to access any resource not explicitly allocated to it; and 
 

(3) it is possible under certain circumstances for a VMM to regain control of resources already 

allocated. Not all processors satisfy these requirements for a VMM. A VMM is tightly related to 

the architectures of processors. It is difficult to implement a VMM for some types of processors, 

such as the x86. 

Virtualization Support at the OS Level 
 

With the help of VM technology, a new computing mode known as cloud computing is 

emerging. Cloud computing is transforming the computing landscape by shifting the hardware 

and staffing costs of managing a computational center to third parties, just like banks. However, 

cloud computing has at least two challenges. The first is the ability to use a variable number of 

physical machines and VM instances depending on the needs of a problem. For example, a task 

may need only a single CPU during some phases of execution but may need hundreds of CPUs at 

other times. The second challenge concerns the slow operation of instantiating new VMs. 

Why OS-Level Virtualization? 
 



 

NARAYANA ENGINEERING COLLEGE::GUDUR                          Prepared By Mr.U.Satyanarayana 

 

it is slow to initialize a hardware-level VM because each VM creates its own image from scratch. 

In a cloud computing environment, perhaps thousands of VMs need to be initialized 

simultaneously. Moreover, full virtualization at the hardware level also has the disadvantages of 

slow performance and low density, and the need for para-virtualization to modify the guest OS. 

Operating system virtualization inserts a virtualization layer inside an operating system to 
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partition a machine’s physical resources. It enables multiple isolated VMs within a single 

operating system kernel. This kind of VM is often called a virtual execution environment (VE), 

Virtual Private System (VPS), or simply container. From the user’s point of view, VEs look like 

real servers. This means a VE has its own set of processes, file system, user accounts, network 

interfaces with IP addresses, routing tables, firewall rules, and other personal settings. OS-level 

virtualization is also called single-OS image virtualization which illustrates operating system 

virtualization from the point of view of a machine stack. 

Advantages of OS Extensions 
 

Compared to hardware-level virtualization, the benefits of OS extensions are twofold: 
 

(1) VMs at the operating system level have minimal startup/shutdown costs, low resource 

requirements, and high scalability; and 

(2) for an OS-level VM, it is possible for a VM and its host environment to synchronize state 

changes when necessary. These benefits can be achieved via two mechanisms of OS-level 

virtualization: 

(1) All OS-level VMs on the same physical machine share a single operating system kernel; and 
 

(2) the virtualization layer can be designed in a way that allows processes in VMs to access as 

many resources of the host machine as possible, but never to modify them. 

Disadvantages of OS Extensions 
 

The main disadvantage of OS extensions is that all the VMs at operating system level on a single 

container must have the same kind of guest operating system. That is, although different OS- 

level VMs may have different operating system distributions, they must pertain to the same 

operating system family. For example, a Windows distribution such as Windows XP cannot run 

on a Linux-based container. However, users of cloud computing have various preferences. Some 

prefer Windows and others prefer Linux or other operating systems.. The virtualization layer is 

inserted inside the OS to partition the hardware resources for multiple VMs to run their 

applications in multiple virtual environments. To implement OS-level virtualization, isolated 

execution environments (VMs) should be created based on a single OS kernel. 

There are two ways to implement virtual root directories: duplicating common resources to each 

VM partition; or sharing most resources with the host environment and only creating private 

resource copies on the VM on demand. 

Virtualization on Linux or Windows Platforms 
 

most reported OS-level virtualization systems are Linux-based. Virtualization support on the 

Windows-based platform is still in the research stage. The Linux kernel offers an abstraction 

layer to allow software processes to work with and operate on resources without knowing the 

hardware details. New hardware may need a new Linux kernel to support. Therefore, different 
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Linux platforms use patched kernels to provide special support for extended functionality. 
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However, most Linux platforms are not tied to a special kernel. In such a case, a host can run 

several VMs simultaneously on the same hardware, summarizes several examples of OS-level 

virtualization tools that have been developed in recent years. Two OS tools (Linux vServer and 

OpenVZ) support Linux platforms to run other platform-based applications through 

virtualization. These two OS-level tools are illustrated in The third tool, FVM, is an attempt 

specifically developed for virtualization on the Windows NT platform. 

Middleware Support for Virtualization 
 

Library-level virtualization is also known as user-level Application Binary Interface (ABI) or 

API emulation. This type of virtualization can create execution environments for running alien 

programs on a platform rather than creating a VM to run the entire operating system. API call 

interception and remapping are the key functions performed. This section provides an overview 

of several library-level virtualization systems: namely the Windows Application Binary Interface 

(WABI), lxrun, WINE, Visual MainWin, and vCUDA. 
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VIRTUALIZATIONSTRUCTURES/TOOLS AND MECHANISMS 
 

In general, there are three typical classes of VM architecture showed the architectures of a 

machine before and after virtualization. Before virtualization, the operating system manages the 

hardware. After virtualization, a virtualization layer is inserted between the hardware and the 

operating system. In such a case, the virtualization layer is responsible for converting portions of 

the real hardware into virtual hardware. Therefore, different operating systems such as Linux and 

Windows can run on the same physical machine, simultaneously. Depending on the position of 

the virtualization layer, there are several classes of VM architectures, namely the hypervisor 

architecture, para-virtualization, and host-based virtualization. The hypervisor is also known as 

the VMM (Virtual Machine Monitor). They both perform the same virtualization operations. 

Hypervisor Architecture 
 

The hypervisor supports hardware-level virtualization on bare metal devices like CPU, memory, 

disk and network interfaces. The hypervisor software sits directly between the physical hardware 

and its OS. This virtualization layer is referred to as either the VMM or the hypervisor. The 

hypervisor provides hypercalls for the guest OSes and applications. Depending on the 

functionality, a hypervisor can assume a micro-kernel architecture like the Microsoft Hyper-V. 

A micro-kernel hypervisor includes only the basic and unchanging functions (such as physical 

memory management and processor scheduling). The device drivers and other changeable 

components are outside the hypervisor. A monolithic hypervisor implements all the 

aforementioned functions, including those of the device drivers. Therefore, the size of the 

hypervisor code of a micro-kernel hypervisor is smaller than that of a monolithic hypervisor. 

The Xen Architecture 
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Xen is an open source hypervisor program developed by Cambridge University. Xen is a micro- 

kernel hypervisor, which separates the policy from the mechanism. The Xen hypervisor 

implements all the mechanisms, leaving the policy to be handled by Domain 0. Xen does not 

include any device drivers natively . It just provides a mechanism by which a guest OS can have 

direct access to the physical devices. As a result, the size of the Xen hypervisor is kept rather 
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small. Xen provides a virtual environment located between the hardware and the OS. A number 

of vendors are in the process of developing commercial Xen hypervisors, among them are Citrix 

XenServer and Oracle VM . 
 

The core components of a Xen system are the hypervisor, kernel, and applications. The 

organization of the three components is important. Like other virtualization systems, many guest 

OSes can run on top of the hypervisor. However, not all guest OSes are created equal, and one in 

particular controls the others. The guest OS, which has control ability, is called Domain 0, and 

the others are called Domain U. Domain 0 is a privileged guest OS of Xen. It is first loaded when 

Xen boots without any file system drivers being available. Domain 0 is designed to access 

hardware directly and manage devices. 

Therefore, one of the responsibilities of Domain 0 is to allocate and map hardware resources for 

the guest domains (the Domain U domains). 

For example, Xen is based on Linux and its security level is C2. Its management VM is named 

Domain 0, which has the privilege to manage other VMs implemented on the same host. If 

Domain 0 is compromised, the hacker can control the entire system. So, in the VM system, 

security policies are needed to improve the security of Domain 0. Domain 0, behaving as a 

VMM, allows users to create, copy, save, read, modify, share, migrate, and roll back VMs as 

easily as manipulating a file, which flexibly provides tremendous benefits for users. 

Unfortunately, it also brings a series of security problems during the software life cycle and data 

lifetime. 

Binary Translation with Full Virtualization 
 

Depending on implementation technologies, hardware virtualization can be classified into two 

categories: full virtualization and host-based virtualization. Full virtualization does not need to 

modify the host OS. It relies on binary translation to trap and to virtualize the execution of 

certain sensitive, nonvirtualizable instructions. The guest OSes and their applications consist of 

noncritical and critical instructions. In a host-based system, both a host OS and a guest OS are 

used. A virtualization software layer is built between the host OS and guest OS. These two 

classes of VM architecture are introduced next. 
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Full Virtualization 
 

With full virtualization, noncritical instructions run on the hardware directly while critical 

instructions are discovered and replaced with traps into the VMM to be emulated by software. 

Both the hypervisor and VMM approaches are considered full virtualization. Why are only 
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critical instructions trapped into the VMM? This is because binary translation can incur a large 

performance overhead. Noncritical instructions do not control hardware or threaten the security 

of the system, but critical instructions do. Therefore, running noncritical instructions on 

hardware not only can promote efficiency, but also can ensure system security. 

Binary Translation of Guest OS Requests Using a VMM 
 

This approach was implemented by VMware and many other software companies. VMware puts 

the VMM at Ring 0 and the guest OS at Ring 1. The VMM scans the instruction stream and 

identifies the privileged, control- and behavior-sensitive instructions. When these instructions are 

identified, they are trapped into the VMM, which emulates the behavior of these instructions. 

The method used in this emulation is called binary translation. Therefore, full virtualization 

combines binary translation and direct execution. 
 

The guest OS is completely decoupled from the underlying hardware. Consequently, the guest 

OS is unaware that it is being virtualized. Indirect execution of complex instructions via binary 

translation of guest OS requests using the VMM plus direct execution of simple instructions on 

the same host. it involves binary translation which is rather time-consuming. Binary translation 

employs a code cache to store translated hot instructions to improve performance, but it increases 

the cost of memory usage. 

Host-Based Virtualization 
 

An alternative VM architecture is to install a virtualization layer on top of the host OS. This host 

OS is still responsible for managing the hardware. The guest OSes are installed and run on top of 

the virtualization layer. Dedicated applications may run on the VMs. Certainly, some other 

applications can also run with the host OS directly. This host-based architecture has some 

distinct advantages, as enumerated next. First, the user can install this VM architecture without 

modifying the host OS. The virtualizing software can rely on the host OS to provide device 

drivers and other low-level services. This will simplify the VM design and ease its deployment. 

Second, the host-based approach appeals to many host machine configurations. Compared to the 

hypervisor/VMM architecture, the performance of the host-based architecture may also be low. 

When an application requests hardware access, it involves four layers of mapping which 
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downgrades performance significantly. When the ISA of a guest OS is different from the ISA of 

the underlying hardware, binary translation must be adopted. Although the host-based 

architecture has flexibility, the performance is too low to be useful in practice. 

Para-Virtualization with Compiler Support 
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Para-virtualization needs to modify the guest operating systems. A para-virtualized VM provides 

special APIs requiring substantial OS modifications in user applications. The virtualization layer 

can be inserted at different positions in a machine software stack. However, para-virtualization 

attempts to reduce the virtualization overhead, and thus improve performance by modifying only 

the guest OS kernel, illustrates the concept of a para-virtualized VM architecture. The guest 

operating systems are para-virtualized. They are assisted by an intelligent compiler to replace the 

nonvirtualizable OS instructions by hypercalls 

Para-virtualized VM architecture, which involves modifying the guest OS kernel to replace non- 

virtualizable instructions with hypercalls for the hypervisor or the VMM to carry out the 

virtualization process. The use of a para-virtualized guest OS assisted by an intelligent compiler 

to replace nonvirtualizable OS instructions by hypercalls. Courtesy of VMWare 

Para-Virtualization Architecture 
 

When the x86 processor is virtualized, a virtualization layer is inserted between the hardware and 

the OS. According to the x86 ring definition, the virtualization layer should also be installed at 

Ring 0. Different instructions at Ring 0 may cause some problems. Para-virtualization replaces 

nonvirtualizable instructions with hypercalls that communicate directly with the hypervisor or 

VMM. However, when the guest OS kernel is modified for virtualization, it can no longer run on 

the hardware directly. 
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Although para-virtualization reduces the overhead, it has incurred other problems. First, its 

compatibility and portability, Second, the cost of maintaining para-virtualized OSes is high, 

Finally, the performance advantage of para-virtualization varies greatly due to workload 

variations. Compared with full virtualization, para-virtualization is relatively easy and more 

practical. The main problem in full virtualization is its low performance in binary translation. To 



 

NARAYANA ENGINEERING COLLEGE::GUDUR                          Prepared By Mr.U.Satyanarayana 

 

speed up binary translation is difficult. Therefore, many virtualization products employ the para- 

virtualization architecture. The popular Xen, KVM, and VMware ESX are good examples. 

KVM (Kernel-Based VM) 
 

This is a Linux para-virtualization system—a part of the Linux version 2.6.20 kernel.Memory 

management and scheduling activities are carried out by the existing Linux kernel. The KVM 

does the rest, which makes it simpler than the hypervisor that controls the entire machine. KVM 

is a hardware-assisted para-virtualization tool, which improves performance and supports 

unmodified guest OSes such as Windows, Linux, Solaris, and other UNIX variants. 

Para-Virtualization with Compiler Support 
 

Unlike the full virtualization architecture which intercepts and emulates privileged and sensitive 

instructions at runtime, para-virtualization handles these instructions at compile time. The guest 

OS kernel is modified to replace the privileged and sensitive instructions with hyper calls to the 

hypervisor or VMM. Xen assumes such a para-virtualization architecture. The guest OS running 

in a guest domain may run at Ring 1 instead of at Ring 0. This implies that the guest OS may not 

be able to execute some privileged and sensitive instructions. The privileged instructions are 

implemented by hyper calls to the hypervisor. 

VIRTUALIZATION OF CPU, MEMORY, AND I/O DEVICES 
 

To support virtualization, processors such as the x86 employ a special running mode and 

instructions, known as hardware-assisted virtualization. In this way, the VMM and guest OS run 

in different modes and all sensitive instructions of the guest OS and its applications are trapped 

in the VMM. To save processor states, mode switching is completed by hardware. For the x86 

architecture, Intel and AMD have proprietary technologies for hardware-assisted virtualization. 

Hardware Support for Virtualization 
 

Modern operating systems and processors permit multiple processes to run simultaneously. If 

there is no protection mechanism in a processor, all instructions from different processes will 

access the hardware directly and cause a system crash. Therefore, all processors have at least two 

modes, user mode and supervisor mode, to ensure controlled access of critical hardware. 

Instructions running in supervisor mode are called privileged instructions. Other instructions are 

unprivileged instructions. In a virtualized environment, it is more difficult to make OSes and 

applications run correctly because there are more layers in the machine stack. Intel’s hardware 

support approach. 
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At the time of this writing, many hardware virtualization products were available. The VMware 

Workstation is a VM software suite for x86 and x86-64 computers. This software suite allows 

users to set up multiple x86 and x86-64 virtual computers and to use one or more of these VMs 

simultaneously with the host operating system. The VMware Workstation assumes the host- 

based virtualization. Xen is a hypervisor for use in IA-32, x86-64, Itanium, and PowerPC 970 

hosts. Actually, Xen modifies Linux as the lowest and most privileged layer, or a hypervisor. 

One or more guest OS can run on top of the hypervisor. KVM (Kernel-based Virtual Machine) is 

a Linux kernel virtualization infrastructure. KVM can support hardware-assisted virtualization 

and paravirtualization by using the Intel VT-x or AMD-v and VirtIO framework, respectively. 

The VirtIO framework includes a paravirtual Ethernet card, a disk I/O controller, a balloon 

device for adjusting guest memory usage, and a VGA graphics interface using VMware drivers. 

CPU Virtualization 
 

A VM is a duplicate of an existing computer system in which a majority of the VM instructions 

are executed on the host processor in native mode. Thus, unprivileged instructions of VMs run 

directly on the host machine for higher efficiency. Other critical instructions should be handled 

carefully for correctness and stability. The critical instructions are divided into three categories: 

privileged instructions, control-sensitive instructions, and behavior-sensitive instructions. 

Privileged instructions execute in a privileged mode and will be trapped if executed outside this 

mode. Control-sensitive 

instructions attempt to change the configuration of resources used. Behavior-sensitive 

instructions have different behaviors depending on the configuration of resources, including the 

load and store operations over the virtual memory. A CPU architecture is virtualizable if it 

supports the ability to run the VM’s privileged and unprivileged instructions in the CPU’s user 

mode while the VMM runs in supervisor mode. When the privileged instructions including 

control- and behavior-sensitive instructions of a VM are executed, they are trapped in the VMM. 

In this case, the VMM acts as a unified mediator for hardware access from different VMs to 

guarantee the correctness and stability of the whole system. However, not all CPU architectures 

are virtualizable. RISC CPU architectures can be naturally virtualized because all control-and 

behavior-sensitive instructions are privileged instructions. On the contrary, x86 CPU 

architectures are not primarily designed to support virtualization. This is because about 10 

sensitive instructions, such as SGDT and SMSW, are not privileged instructions. When these 

instructions execute in virtualization, they cannot be trapped in the VMM. On a native UNIX- 

like system, a system call triggers the 80h interrupt and passes control to the OS kernel. The 

interrupt handler in the kernel is then invoked to process the system call. On a paravirtualization 

system such as Xen, a system call in the guest OS first triggers the 80h interrupt normally. 

Almost at the same time, the 82h interrupt in the hypervisor is triggered. Incidentally, control is 

passed on to the hypervisor as well. When the hypervisor completes its task for the guest OS 

system call, it passes control back to the guest OS kernel. Certainly, the guest OS kernel may 

also invoke the hypercall while it’s running. Although paravirtualization of a CPU lets 

unmodified applications run in the VM, it causes a small performance penalty. 
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Hardware-Assisted CPU Virtualization 

 

This technique attempts to simplify virtualization because full or paravirtualization is 

complicated. Intel and AMD add an additional mode called privilege mode level (some people 
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call it Ring-1) to x86 processors. Therefore, operating systems can still run at Ring 0 and the 

hypervisor can run at Ring -1. All the privileged and sensitive instructions are trapped in the 

hypervisor automatically. This technique removes the difficulty of implementing binary 

translation of full virtualization. It also lets the operating system run in VMs without 

modification. 

Memory Virtualization 
 

Virtual memory virtualization is similar to the virtual memory support provided by modern 

operating systems. In a traditional execution environment, the operating system maintains 

mappings of virtual memory to machine memory using page tables, which is a one-stage 

mapping from virtual memory to machine memory. All modern x86 CPUs include a memory 

management unit (MMU) and a translation lookaside buffer (TLB) to optimize virtual memory 

performance. However, in a virtual execution environment, virtual memory virtualization 

involves sharing the physical system memory in RAM and dynamically allocating it to the 

physical memory of the VMs.That means a two-stage mapping process should be maintained by 

the guest OS and the VMM, respectively: virtual memory to physical memory and physical 

memory to machine memory. Furthermore, MMU virtualization should be supported, which is 

transparent to the guest OS. The guest OS continues to control the mapping of virtual addresses 

to the physical memory addresses of VMs. But the guest OS cannot directly access the actual 

machine memory. The VMM is responsible for mapping the guest physical memory to the actual 

machine memory, shows the two-level memory mapping procedure. 
 

Two-level memory mapping procedure. Courtesy of R. Rblig, et al. Since each page table of the 

guest OSes has a separate page table in the VMM corresponding to it, the VMM page table is 

called the shadow page table. Nested page tables add another layer of indirection to virtual 

memory. The MMU already handles virtual-to-physical translations as defined by the OS. Then 

the physical memory addresses are translated to machine addresses using another set of page 

tables defined by the hypervisor. Since modern operating systems maintain a set of page tables 

for every process, the shadow page tables will get flooded. Consequently, the performance 

overhead and cost of memory will be very high. VMware uses shadow page tables to perform 
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virtual-memory-to-machine-memory address translation. Processors use TLB hardware to map 

the virtual memory directly to the machine memory to avoid the two levels of translation on 

every access. When the guest OS changes the virtual memory to a physical memory mapping, 

the VMM updates the shadow page tables to enable a direct lookup. The AMD Barcelona 

processor has featured hardware-assisted memory virtualization since 2007. It provides hardware 
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assistance to the two-stage address translation in a virtual execution environment by using a 

technology called nested paging. 

I/O Virtualization 
 

I/O virtualization involves managing the routing of I/O requests between virtual devices and the 

shared physical hardware. At the time of this writing, there are three ways to implement I/O 

virtualization: full device emulation, para-virtualization, and direct I/O.Full device emulation is 

the first approach for I/O virtualization. Generally, this approach emulates well-known, real- 

world devices. All the functions of a device or bus infrastructure, such as device enumeration, 

identification, interrupts, and DMA, are replicated in software. This software is located in the 

VMM and acts as a virtual device. The I/O access requests of the guest OS are trapped in the 

VMM which interacts with the I/O devices. Device emulation for I/O virtualization implemented 

inside the middle layer that maps real I/O devices into the virtual devices for the guest device 

driver to use. Courtesy of V. Chadha, et al. and Y. Dong, et al. A single hardware device can be 

shared by multiple VMs that run concurrently. However, software emulation runs much slower 

than the hardware it emulates. 
 

The para-virtualization method of I/O virtualization is typically used in Xen. It is also known as 

the split driver model consisting of a frontend driver and a backend driver. The frontend driver is 

running in Domain U and the backend driver is running in Domain 0. They interact with each 

other via a block of shared memory. The frontend driver manages the I/O requests of the guest 

OSes and the backend driver is responsible for managing the real I/O devices and multiplexing 

the I/O data of different VMs. Although para-I/O-virtualization achieves better device 

performance than full device emulation, it comes with a higher CPU overhead. 

Direct I/O virtualization lets the VM access devices directly. It can achieve close-to-native 

performance without high CPU costs. However, current direct I/O virtualization implementations 

focus on networking for mainframes. There are a lot of challenges for commodity hardware 

devices. For example, when a physical device is reclaimed (required by workload migration) for 

later reassignment, it may have been set to an arbitrary state (e.g., DMA to some arbitrary 

memory locations) that can function incorrectly or even crash the whole system. Since software- 

based I/O virtualization requires a very high overhead of device emulation, hardware-assisted 
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I/O virtualization is critical. Intel VT-d supports the remapping of I/O DMA transfers and 

device-generated interrupts. The architecture of VT-d provides the flexibility to support multiple 

usage models that may run unmodified, special-purpose, or ―virtualization-aware‖ guest OSes. 
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Another way to help I/O virtualization is via self-virtualized I/O (SV-IO) . The key idea of SV- 

IO is to harness the rich resources of a multicore processor. All tasks associated with virtualizing 

an I/O device are encapsulated in SV-IO. It provides virtual devices and an associated access 

API to VMs and a management API to the VMM. SV-IO defines one virtual interface (VIF) for 

every kind of virtualized I/O device, such as virtual network interfaces, virtual block devices 

(disk), virtual camera devices, and others. The guest OS interacts with the VIFs via VIF device 

drivers. Each VIF consists of two message queues. One is for outgoing messages to the devices 

and the other is for incoming messages from the devices. In addition, each VIF has a unique ID 

for identifying it in SV-IO. 

Virtual Clusters and Resource Management 
 

A physical cluster is a collection of servers (physical machines) interconnected by a physical 

network such as a LAN. various clustering techniques on physical machines. Here, we introduce 

virtual clusters and study its properties as well as explore their potential applications. In this 

section, we will study three critical design issues of virtual clusters: live migration of VMs, 

memory and file migrations, and dynamic deployment of virtual clusters. When a traditional VM 

is initialized, the administrator needs to manually write configuration information or specify the 

configuration sources. When more VMs join a network, an inefficient configuration always 

causes problems with overloading or underutilization. Amazon’s Elastic Compute Cloud (EC2) 

is a good example of a web service that provides elastic computing power in a cloud. EC2 

permits customers to create VMs and to manage user accounts over the time of their use. Most 

virtualization platforms, including XenServer and VMware ESX Server, support a bridging 

mode which allows all domains to appear on the network as individual hosts. By using this 

mode, VMs can communicate with one another freely through the virtual network interface card 

and configure the network automatically. 

Physical versus Virtual Clusters 
 

Virtual clusters are built with VMs installed at distributed servers from one or more physical 

clusters. The VMs in a virtual cluster are interconnected logically by a virtual network across 

several physical networks. Figure 3.18 illustrates the concepts of virtual clusters and physical 

clusters. Each virtual cluster is formed with physical machines or a VM hosted by multiple 

physical clusters. The virtual cluster boundaries are shown as distinct boundaries. A cloud 

platform with four virtual clusters over three physical clusters shaded differently. Courtesy of 

Fan Zhang, Tsinghua University 
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The provisioning of VMs to a virtual cluster is done dynamically to have the following 

interesting properties: 

• The virtual cluster nodes can be either physical or virtual machines. Multiple VMs running 

with different OSes can be deployed on the same physical node. 

• A VM runs with a guest OS, which is often different from the host OS, that manages the 

resources in the physical machine, where the VM is implemented. 

• The purpose of using VMs is to consolidate multiple functionalities on the same server. This 

will greatly enhance server utilization and application flexibility. 

• VMs can be colonized (replicated) in multiple servers for the purpose of promoting distributed 

parallelism, fault tolerance, and disaster recovery. 

• The size (number of nodes) of a virtual cluster can grow or shrink dynamically, similar to the 

way an overlay network varies in size in a peer-to-peer (P2P) network. 

• The failure of any physical nodes may disable some VMs installed on the failing nodes. But the 

failure of VMs will not pull down the host system. 

Since system virtualization has been widely used, it is necessary to effectively manage VMs 

running on a mass of physical computing nodes (also called virtual clusters) and consequently 

build a high-performance virtualized computing environment. This involves virtual cluster 

deployment, monitoring and management over large-scale clusters, as well as resource 

scheduling, load balancing, server consolidation, fault tolerance, and other techniques. The 

different node colors refer to different virtual clusters. In a virtual cluster system, it is quite 

important to store the large number of VM images efficiently.The concept of a virtual cluster 

based on application partitioning or customization. The different colors in the figure represent 

the nodes in different virtual clusters. As a large number of VM images might be present, the 

most important thing is to determine how to store those images in the system efficiently. There 

are common installations for most users or applications, such as operating systems or user-level 

programming libraries. These software packages can be preinstalled as templates (called 

template VMs). With these templates, users can build their own software stacks.  New OS 

instances can be copied from the template VM. User-specific components such as programming 

libraries and applications can be installed to those instances. The concept of a virtual cluster 

based on application partitioning. Courtesy of Kang Chen, TsinghuaUniversity 2008 

Three physical clusters and Four virtual clusters are created on the right, over the physical 

clusters. The physical machines are also called host systems. In contrast, the VMs are guest 

systems. The host and guest systems may run with different operating systems. Each VM can be 

installed on a remote server or replicated on multiple servers belonging to the same or 

 

 
different physical clusters. The boundary of a virtual cluster can change as VM nodes are added, 
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removed, or migrated dynamically over time. 

Fast Deployment and Effective Scheduling 
 

The system should have the capability of fast deployment. Here, deployment means two things: 

to construct and distribute software stacks (OS, libraries, applications) to a physical node inside 
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clusters as fast as possible, and to quickly switch runtime environments from one user’s virtual 

cluster to another user’s virtual cluster. If one user finishes using his system, the corresponding 

virtual cluster should shut down or suspend quickly to save the resources to run other VMs for 

other users. The concept of ―green computing‖ has attracted much attention recently. However, 

previous approaches have focused on saving the energy cost of components in a single 

workstation without a global vision. Consequently, they do not necessarily reduce the power 

consumption of the whole cluster. Other cluster-wide energy-efficient techniques can only be 

applied to homogeneous workstations and specific applications. The live migration of VMs 

allows workloads of one node to transfer to another node. However, it does not guarantee that 

VMs can randomly migrate among themselves. In fact, the potential overhead caused by live 

migrations of VMs cannot be ignored. 

. High-Performance Virtual Storage 
 

The template VM can be distributed to several physical hosts in the cluster to customize the 

VMs. In addition, existing software packages reduce the time for customization as well as 

switching virtual environments. It is important to efficiently manage the disk spaces occupied by 

template software packages. Some storage architecture design can be applied to reduce 

duplicated blocks in a distributed file system of virtual clusters. Hash values are used to compare 

the contents of data blocks. Users have their own profiles which store the identification of the 

data blocks for corresponding VMs in a user-specific virtual cluster. New blocks are created 

when users modify the corresponding data. Newly created blocks are identified in the users’ 

profiles. Basically, there are four steps to deploy a group of VMs onto a target cluster: preparing 

the disk image, configuring the VMs, choosing the destination nodes, and executing the VM 

deployment command on every host. Many systems use templates to simplify the disk image 

preparation process. A template is a disk image that includes a preinstalled operating system with 

or without certain application software. Users choose a proper template according to their 

requirements and make a duplicate of it as their own disk image. Templates could implement the 

COW (Copy on Write) format. A new COW backup file is very small and easy to create and 

transfer. Therefore, it definitely reduces disk space consumption. In addition, VM deployment 

time is much shorter than that of copying the whole raw image file. Every VM is configured with 

a name, disk image, network setting, and allocated CPU and memory. One needs to record each 

VM configuration into a file. However, this method is inefficient when managing a large group 

of VMs. VMs with the same configurations could use pre-edited profiles to simplify the process. 

In this scenario, the system configures the VMs according to the chosen profile. Most 

configuration items use the same settings, while some of them, such as UUID, VM name, and IP 

address, are assigned with automatically calculated values 

Live VM Migration Steps and Performance Effects 
 

In a cluster built with mixed nodes of host and guest systems, the normal method of operation is 

to run everything on the physical machine. When a VM fails, its role could be replaced by 

another VM on a different node, as long as they both run with the same guest OS. In other words, 

a physical node can fail over to a VM on another host. This is different from physical-to-physical 
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failover in a traditional physical cluster. The advantage is enhanced failover flexibility. The 

potential drawback is that a VM must stop playing its role if its residing host node fails. 

However, this problem can be mitigated with VM life migration. Figure 3.20 shows the process 

of life migration of a VM from host A to host B. The migration copies the VM state file from the 

storage area to the host machine. Live migration process of a VM from one host to another. 
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Courtesy of C. Clark, et al. are four ways to manage a virtual cluster. First, you can use a guest- 

based manager, by which the cluster manager resides on a guest system. In this case, multiple 

VMs form a virtual cluster. For example, openMosix is an open source Linux cluster running 

different guest systems on top of the Xen hypervisor. Another example is Sun’s cluster Oasis, an 

experimental Solaris cluster of VMs supported by a VMware VMM. 
 

Second, you can build a cluster manager on the host systems. The host-based manager supervises 

the guest systems and can restart the guest system on another physical machine. A good example 

is the VMware HA system that can restart a guest system after failure. 

These two cluster management systems are either guest-only or host-only, but they do not mix. A 

third way to manage a virtual cluster is to use an independent cluster manager on both the host 

and guest systems. This will make infrastructure management more complex, This means the 

manager must be designed to distinguish between virtualized resources and physical resources. 

Various cluster management schemes can be greatly enhanced when VM life migration is 

enabled with minimal overhead. 

VMs can be live-migrated from one physical machine to another; in case of failure, one VM can 

be replaced by another VM. Virtual clusters can be applied in computational grids, cloud 

platforms, and high-performance computing (HPC) systems. In particular, virtual clustering 

plays a key role in cloud computing. When a VM runs a live service, it is necessary to make a 

trade-off to ensure that the migration occurs in a manner that minimizes all three metrics. The 

motivation is to design a live VM migration scheme with negligible downtime, the lowest 

network bandwidth consumption possible, and a reasonable total migration time. 
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Furthermore, we should ensure that the migration will not disrupt other active services residing 

in the same host through resource contention (e.g., CPU, network bandwidth). A VM can be in 

one of the following four states. An inactive state is defined by the virtualization platform, under 

which the VM is not enabled. An active state refers to a VM that has been instantiated at the 

virtualization platform to perform a real task. A paused state corresponds to a VM that has been 
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instantiated but disabled to process a task or paused in a waiting state. A VM enters the 

suspended state if its machine file and virtual resources are stored back to the disk, live migration 

of a VM consists of the following six steps: 

Steps 0 and 1: Start migration. This step makes preparations for the migration, including 

determining the migrating VM and the destination host. Although users could manually make a 

VM migrate to an appointed host, in most circumstances, the migration is automatically started 

by strategies such as load balancing and server consolidation. 

Steps 2: Transfer memory. Since the whole execution state of the VM is stored in memory, 

sending the VM’s memory to the destination node ensures continuity of the service provided by 

the VM. All of the memory data is transferred in the first round, and then the migration 

controller recopies the memory data which is changed in the last round. These steps keep 

iterating until the dirty portion of the memory is small enough to handle the final copy. Although 

precopying memory is performed iteratively, the execution of programs is not obviously 

interrupted. 

Step 3: Suspend the VM and copy the last portion of the data. The migrating VM’s execution is 

suspended when the last round’s memory data is transferred. Other nonmemory data such as 

CPU and network states should be sent as well. During this step, the VM is stopped and its 

applications will no longer run. This ―service unavailable‖ time is called the ―downtime‖ of 

migration, which should be as short as possible so that it can be negligible to users. 

Steps 4 and 5: Commit and activate the new host. After all the needed data is copied, on the 

destination host, the VM reloads the states and recovers the execution of programs in it, and the 

service provided by this VM continues. Then the network connection is redirected to the new 

VM and the dependency to the source host is cleared. The whole migration process finishes by 

removing the original VM from the source host. 

The effect on the data transmission rate (Mbit/second) of live migration of a VM from one host 

to another. Before copying the VM with 512 KB files for 100 clients, the data throughput was 

870 MB/second. The first precopy takes 63 seconds, during which the rate is reduced to 765 

MB/second. Then the data rate reduces to 694 MB/second in 9.8 seconds for more iterations of 

the copying process. The system experiences only 165 ms of downtime, before the VM is 

restored at the destination host. This experimental result shows a very small migration overhead 

in live transfer of a VMbetween host nodes. This is critical to achieve dynamic cluster 

reconfiguration and disaster recovery as needed in cloud computing. 

Effect on data transmission rate of a VM migrated from one failing web server to another. 

Courtesy of C. Clark, et al. With the emergence of widespread cluster computing more than a 

decade ago, many cluster configuration and management systems have been developed to 

achieve a range of goals. These goals naturally influence individual approaches to cluster 

management. VM technology has become a popular method for simplifying management and 

sharing of physical computing resources. Platforms such as VMware and Xen allow multiple 

VMs with different operating systems and configurations to coexist on the same physical host in 
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mutual isolation. Clustering inexpensive computers is an effective way to obtain reliable, 

scalable computing power for network services and compute-intensive applications 

Migration of Memory, Files, and Network Resources 
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Since clusters have a high initial cost of ownership, including space, power conditioning, and 

cooling equipment, leasing or sharing access to a common cluster is an attractive solution when 

demands vary over time. Shared clusters offer economies of scale and more effective utilization 

of resources by multiplexing. 

Memory Migration 
 

This is one of the most important aspects of VM migration. Moving the memory instance of a 

VM from one physical host to another can be approached in any number of ways. But 

traditionally, the concepts behind the techniques tend to share common implementation 

paradigms. The techniques employed for this purpose depend upon the characteristics of 

application/workloads supported by the guest OS. 

Memory migration can be in a range of hundreds of megabytes to a few gigabytes in a typical 

system today, and it needs to be done in an efficient manner. The Internet Suspend-Resume 

(ISR) technique exploits temporal locality as memory states are likely to have considerable 

overlap in the suspended and the resumed instances of a VM. Temporal locality refers to the fact 

that the memory states differ only by the amount of work done since a VM was last suspended 

before being initiated for migration. 

To exploit temporal locality, each file in the file system is represented as a tree of small subfiles. 

A copy of this tree exists in both the suspended and resumed VM instances. The advantage of 

using a tree-based representation of files is that the caching ensures the transmission of only 

those files which have been changed. The ISR technique deals with situations where the 

migration of live machines is not a necessity. 

File System Migration 
 

To support VM migration, a system must provide each VM with a consistent, location- 

independent view of the file system that is available on all hosts. A simple way to achieve this is 

to provide each VM with its own virtual disk which the file system is mapped to and transport 

the contents of this virtual disk along with the other states of the VM. However, due to the 

current trend of high-capacity disks, migration of the contents of an entire disk over a network is 

not a viable solution. Another way is to have a global file system across all machines where a 

VM could be located. This way removes the need to copy files from one machine to another 

because all files are network-accessible. 

A distributed file system is used in ISR serving as a transport mechanism for propagating a 

suspended VM state. The actual file systems themselves are not mapped onto the distributed file 

system. Instead, the VMM only accesses its local file system. The relevant VM files are 

explicitly copied into the local file system for a resume operation and taken out of the local file 

system for a suspend operation. This approach relieves developers from the complexities of 

implementing several different file system calls for different distributed file systems. It also 

essentially disassociates the VMM from any particular distributed file system semantics. 

However, this decoupling means that the VMM has to store the contents of each VM’s virtual 
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disks in its local files, which have to be moved around with the other state information of that 

VM. 

In smart copying, the VMM exploits spatial locality. Typically, people often move between the 

same small number of locations, such as their home and office. In these conditions, 
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it is possible to transmit only the difference between the two file systems at suspending and 

resuming locations. This technique significantly reduces the amount of actual physical data that 

has to be moved. In situations where there is no locality to exploit, a different approach is to 

synthesize much of the state at the resuming site. On many systems, user files only form a small 

fraction of the actual data on disk. Operating system and application software account for the 

majority of storage space. The proactive state transfer solution works in those cases where the 

resuming site can be predicted with reasonable confidence. 

Network Migration 
 

A migrating VM should maintain all open network connections without relying on forwarding 

mechanisms on the original host or on support from mobility or redirection mechanisms. To 

enable remote systems to locate and communicate with a VM, each VM must be assigned a 

virtual IP address known to other entities. This address can be distinct from the IP address of the 

host machine where the VM is currently located. Each VM can also have its own distinct virtual 

MAC address. The VMM maintains a mapping of the virtual IP and MAC addresses to their 

corresponding VMs. In general, a migrating VM includes all the protocol states and carries its IP 

address with it. 

If the source and destination machines of a VM migration are typically connected to a single 

switched LAN, an unsolicited ARP reply from the migrating host is provided advertising that the 

IP has moved to a new location. This solves the open network connection problem by 

reconfiguring all the peers to send future packets to a new location. Although a few packets that 

have already been transmitted might be lost, there are no other problems with this mechanism. 

Alternatively, on a switched network, the migrating OS can keep its original Ethernet MAC 

address and rely on the network switch to detect its move to a new port. 

Live migration means moving a VM from one physical node to another while keeping its OS 

environment and applications unbroken. This capability is being increasingly utilized in today’s 

enterprise environments to provide efficient online system maintenance, reconfiguration, load 

balancing, and proactive fault tolerance. It provides desirable features to satisfy requirements for 

computing resources in modern computing systems, including server consolidation, performance 

isolation, and ease of management. As a result, many implementations are available which 

support the feature using disparate functionalities. Traditional migration suspends VMs before 

the transportation and then resumes them at the end of the process. By importing the precopy 

mechanism, a VM could be live-migrated without stopping the VM and keep the applications 

running during the migration. Live migration is a key feature of system virtualization 

technologies. Here, we focus on VM migration within a cluster environment where a network- 

accessible storage system, such as storage area network (SAN) or network attached storage 

(NAS), is employed. Only memory and CPU status needs to be transferred from the source node 

to the target node. Live migration techniques mainly use the precopy approach, which first 

transfers all memory pages, and then only copies modified pages during the last round 

iteratively. 
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The VM service downtime is expected to be minimal by using iterative copy operations.When 

applications’ writable working set becomes small, the VM is suspended and only the CPU state 

and dirty pages in the last round are sent out to the destination. In the precopy phase, although a 

VM service is still available, much performance degradation will occur because the migration 

daemon continually consumes network bandwidth to transfer dirty pages in each round. An 

adaptive rate limiting approach is employed to mitigate this issue, but total migration time is 

prolonged by nearly 10 times. Moreover, the maximum number of iterations must be set because 

not all applications’ dirty pages are ensured to converge to a small writable working set over 

multiple rounds. In fact, these issues with the pre copy approach are caused by the large amount 

of transferred data during the whole migration process. A check pointing/recovery and 

trace/replay approach (CR/TR-Motion) is proposed to provide fast VM migration. This approach 

transfers the execution trace file in iterations rather than dirty pages, which is logged by a trace 

daemon. Apparently, the total size of all log files is much less than that of dirty pages. So, total 

migration time and downtime of migration are drastically reduced. However, CR/TR-Motion is 

valid only when the log replay rate is larger than the log growth rate. The inequality between 

source and target nodes limits the application scope of live migration in clusters. Another 

strategy of postcopy is introduced for live migration of VMs. Here, all memory pages are 

transferred only once during the whole migration process and the baseline total migration time is 

reduced. But the downtime is much higher than that of pre copy due to the latency of fetching 

pages from the source node before the VM can be resumed on the target. With the advent of 

multi core or many-core machines, abundant CPU resources are available. Even if several VMs 

reside on a same multi core machine, CPU resources are still rich because physical CPUs are 

frequently amenable to multiplexing. We can exploit these copious CPU resources to compress 

page frames and the amount of transferred data can be significantly reduced. Memory 

compression algorithms typically have little memory overhead. Decompression is simple and 

very fast and requires no memory for decompression. 
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VIRTUALIZATION FOR DATA-CENTER AUTOMATION 
 

Data centers have grown rapidly in recent years, and all major IT companies are pouring their 

resources into building new data centers. In addition, Google, Yahoo!, Amazon, Microsoft, HP, 

Apple, and IBM are all in the game. All these companies have invested billions of dollars in 

data-center construction and automation. Data-center automation means that huge volumes of 
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hardware, software, and database resources in these data centers can be allocated dynamically to 

millions of Internet users simultaneously, with guaranteed QoS and cost-effectiveness. 

The latest virtualization development highlights high availability (HA), backup services, 

workload balancing, and further increases in client bases. IDC projected that automation, service 

orientation, policy-based, and variable costs in the virtualization market. The total business 

opportunities may increase to $3.2 billion by 2011. The major market share moves to the areas of 

HA, utility computing, production consolidation, and client bases. In what follows, we will 

discuss server consolidation, virtual storage, OS support, and trust management in automated 

data-center designs. 

 

 
Server Consolidation in Data Centers 

 

In data centers, a large number of heterogeneous workloads can run on servers at various times. 

These heterogeneous workloads can be roughly divided into two categories: chatty workloads 

and non interactive workloads. Chatty workloads may burst at some point and return to a silent 

state at some other point. A web video service is an example of this, whereby a lot of people use 

it at night and few people use it during the day. Non interactive workloads do not require 

people’s efforts to make progress after they are submitted. High-performance computing is a 

typical example of this. At various stages, the requirements for resources of these workloads are 

dramatically different. However, to guarantee that a workload will always be able to cope with 

all demand levels, the workload is statically allocated enough resources so that peak demand is 

satisfied. 
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In this case, the granularity of resource optimization is focused on the CPU, memory, and 

network interfaces. Therefore, it is common that most servers in data centers are underutilized. A 

large amount of hardware, space, power, and management cost of these servers is wasted. Server 

consolidation is an approach to improve the low utility ratio of hardware resources by reducing 

the number of physical servers. Among several server consolidation techniques such as 
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centralized and physical consolidation, virtualization-based server consolidation is the most 

powerful. Data centers need to optimize their resource management. 

In general, the use of VMs increases resource management complexity. This causes a challenge 

in terms of how to improve resource utilization as well as guarantee QoS in data centers. In 

detail, server virtualization has the following side effects: 

• Consolidation enhances hardware utilization. Many underutilized servers are consolidated into 

fewer servers to enhance resource utilization. Consolidation also facilitates backup services and 

disaster recovery. 

• This approach enables more agile provisioning and deployment of resources. In a virtual 

environment, the images of the guest OSes and their applications are readily cloned and reused. 

• The total cost of ownership is reduced. In this sense, server virtualization causes deferred 

purchases of new servers, a smaller data-center footprint, lower maintenance costs, and lower 

power, cooling, and cabling requirements. 

• This approach improves availability and business continuity. The crash of a guest OS has no 

effect on the host OS or any other guest OS. It becomes easier to transfer a VM from one server 

to another, because virtual servers are unaware of the underlying hardware. 

To automate data-center operations, one must consider resource scheduling, architectural 

support, power management, automatic or autonomic resource management, performance of 

analytical models, and so on. In virtualized data centers, an efficient, on-demand, fine-grained 

scheduler is one of the key factors to improve resource utilization. Scheduling and reallocations 

can be done in a wide range of levels in a set of data centers. The levels match at least at the VM 

level, server level, and data-center level. 

Ideally, scheduling and resource reallocations should be done at all levels. However, due to the 

complexity of this, current techniques only focus on a single level or, at most, two levels. 

Dynamic CPU allocation is based on VM utilization and application-level QoS metrics. One 

method considers both CPU and memory flowing as well as automatically adjusting resource 

overhead based on varying workloads in hosted services. Another scheme uses a two-level 

resource management system to handle the complexity involved. A local controller at the VM 

level and a global controller at the server level are designed. They implement autonomic 

resource allocation via the interaction of the local and global controllers. Multicore and 

virtualization are two cutting techniques that can enhance each other. However, the use of CMP 

is far from well optimized. The memory system of CMP is a typical example. One can design a 

virtual hierarchy on a CMP in data centers. One can consider protocols that minimize the 

memory access time, inter-VM interferences, facilitating VM reassignment, and supporting inter- 

VM sharing. One can also consider a VM-aware power budgeting scheme using multiple 

managers integrated to achieve better power management. The power budgeting policies cannot 

ignore the heterogeneity problems. Consequently, one must address the trade-off of power saving 
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and data-center performance. 

Virtual Storage Management 
 

The term ―storage virtualization‖ was widely used before the renaissance of system 

virtualization. Yet the term has a different meaning in a system virtualization environment. 
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Previously, storage virtualization was largely used to describe the aggregation and repartitioning 

of disks at very coarse time scales for use by physical machines. In system virtualization, virtual 

storage includes the storage managed by VMMs and guest 
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OSes. Generally, the data stored in this environment can be classified into two categories: VM 

images and application data. The VM images are special to the virtual environment, while 

application data includes all other data which is the same as the data in traditional OS 

environments. The most important aspects of system virtualization are encapsulation and 

isolation. 

Traditional operating systems and applications running on them can be encapsulated in VMs. 

Only one operating system runs in a virtualization while many applications run in the operating 

system. System virtualization allows multiple VMs to run on a physical machine and the VMs 

are completely isolated. To achieve encapsulation and isolation, both the system software and the 

hardware platform, such as CPUs and chipsets, are rapidly updated. However, storage is lagging. 

The storage systems become the main bottleneck of VM deployment. 

In virtualization environments, a virtualization layer is inserted between the hardware and 

traditional operating systems or a traditional operating system is modified to support 

virtualization. This procedure complicates storage operations. On the one hand, storage 

management of the guest OS performs as though it is operating in a real hard disk while the guest 

OSes cannot access the hard disk directly. On the other hand, many guest OSes contest the hard 

disk when many VMs are running on a single physical machine. Therefore, storage management 

of the underlying VMM is much more complex than that of guest OSes (traditional OSes). 

In addition, the storage primitives used by VMs are not nimble. Hence, operations such as 

remapping volumes across hosts and check pointing disks are frequently clumsy and esoteric, 

and sometimes simply unavailable. In data centers, there are often thousands of VMs, which 

cause the VM images to become flooded. Many researchers tried to solve these problems in 

virtual storage management. The main purposes of their research are to make management easy 

while enhancing performance and reducing the amount of storage occupied by the VM images. 

Parallax is a distributed storage system customized for virtualization environments. Content 

Addressable Storage (CAS) is a solution to reduce the total size of VM images, and therefore 

supports a large set of VM-based systems in data centers. 

Since traditional storage management techniques do not consider the features of storage in 

virtualization environments, Parallax designs a novel architecture in which storage features that 

have traditionally been implemented directly on high-end storage arrays and switchers are 

relocated into a federation of storage VMs. These storage VMs share the same physical hosts as 

the VMs that they serve. It provides an overview of the Parallax system architecture. It supports 

all popular system virtualization techniques, such as para virtualization and full virtualization. 

For each physical machine, Parallax customizes a special storage appliance VM. The storage 

appliance VM acts as a block virtualization layer between individual VMs and the physical 

storage device. It provides a virtual disk for each VM on the same physical machine. 

UNIT-III 2-marks 
 

1. What is the working principle of Cloud Computing? 

2. What is Virtualization? 
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3. Define Cloud services with example. 

4. What are the types of Cloud service development? 

5. Explain cloud provider and cloud broker? 

6. Define - Private Cloud. 

7. Define - Public Cloud 

8. Define - Hybrid Cloud. 
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9. Define anything-as-a-service? 

10. What is mean by SaaS? 

11. What is mean by IaaS? 

12. Explain PaaS? 

13. List out the advantages of Cloud Computing. 

14. . List out the disadvantages of Cloud Computing. 

15. What is Hypervisor? 

10-marks 

1) Write short notes on cloud deployment model. 

2) Explain in detail, categories of cloud. 

3) Explain in detail, pros and cons of cloud. 

4) Explain in detail, different implementation level of virtualization? 

5) Write short notes on OS level virtualization. List the pros and cons of OS level virtualization. 

6) Explain in detail, the virtualization of CPU, Memory and I/O devices. 

7) Write short notes on virtual clusters. 
8) Explain in detail, the virtualization for data center automation. 
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UNIT IV 
 

OPEN SOURCE GRID MIDDLEWARE PACKAGES 

 

As reviewed in Berman, Fox, and Hey , many software, middleware, and programming environments 

have been developed for grid computing over past 15 years. Below we assess their relative strength and 

limitations based on recently reported applications. We first introduce some grid standards and popular 

APIs. Then we present the desired software support and middleware developed for grid computing 

includes four grid middleware packages. 

Grid Software Support and Middleware Packages 

BOINC Berkeley Open Infrastructure for Network Computing. 

UNICORE Middleware developed by the German grid computing community. 
Globus (GT4) A middleware library jointly developed by Argonne National Lab., Univ. of Chicago, and 

USC Information Science Institute, funded by DARPA, NSF, and NIH. CGSP in 

ChinaGrid 
The CGSP (ChinaGrid Support Platform) is a middleware library developed by 20 top universities in 

China as part of the ChinaGrid Project . 

Condor-G Originally developed at the Univ. of Wisconsin for general distributed computing, and later 

extended to Condor-G for grid job management. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
. 

 

Sun Grid Engine (SGE) 

Developed by Sun Microsystems for business grid applications. Applied to private grids and local clusters 

within enterprises or campuses. 

 

Grid Standards and APIs 

 

Grid standards have been developed over the years. The Open Grid Forum (formally Global Grid Forum) and Object 

Management Group are two well-formed organizations behind those standards. We have already introduced the 

OGSA (Open Grid Services Architecture) in standards including the GLUE for resource representation, SAGA 

(Simple API for Grid Applications), GSI (Grid Security Infrastructure), OGSI (Open Grid Service Infrastructure), 

and WSRE (Web Service Resource Framework). 

 

Software Support and Middleware 

 

Grid middleware is specifically designed a layer between hardware and the software. The middleware products 

enable the sharing of heterogeneous resources and managing virtual organizations created around the grid. 

Middleware glues the allocated resources with specific user applications. Popular grid middleware tools include the 

Globus Toolkits (USA), gLight, UNICORE (German), BOINC (Berkeley), CGSP (China), Condor-G, and Sun Grid 
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Engine, etc. summarizes the grid software support and middleware packages developed for grid systems since 1995. 

In subsequent sections, we will describe the features in Condor-G, SGE, GT4, and CGSP. 
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THE GLOBUS TOOLKIT ARCHITECTURE (GT4) 

 

The Globus Toolkit, started in 1995 with funding from DARPA, is an open middleware library for the grid 

computing communities. These open source software libraries support many operational grids and their applications 

on an international basis. The toolkit addresses common problems and issues related to grid resource discovery, 

management, communication, security, fault detection, and portability. The software itself provides a variety of 

components and capabilities. The library includes a rich set of service implementations. The implemented software 

supports grid infrastructure management, provides tools for building new web services in Java, C, and Python.The 

Globus Toolkit was initially motivated by a desire to remove obstacles that prevent seamless collaboration, and thus 

sharing of resources and services, in scientific and engineering applications. The shared resources can be computers, 

storage, data, services, networks, science instruments (e.g., sensors), and so on. The Globus library version GT4. 

Globus Tookit GT4 supports distributed and cluster computing services. Courtesy of I. Foster 
 

 

The GT4 Library 
GT4 offers the middle-level core services in grid applications. The high-level services and tools, such as 

MPI, Condor-G, and Nirod/G, are developed by third parties for general-purpose distributed computing 

applications. The local services, such as LSF, TCP, Linux, and Condor, are at the bottom level and are 

fundamental tools supplied by other developers summarizes GT4’s core grid services by module name. 

Essentially, these functional modules 
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Functional Modules in Globus GT4 Library 

 

Service Functionality Module Name Functional Description 

Global Resource Allocation Manager GRAM Grid Resource Access and Management (HTTP-based) 
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Communication Nexus Unicast and multicast communication 

Grid Security Infrastructure GSI Authentication and related security services 
Monitory and Discovery Service MDS Distributed access to structure and state information 

Health and Status HBM Heartbeat monitoring of system components 

Global Access of Secondary Storage GASS Grid access of data in remote secondary storage 

Grid File Transfer GridFTP Inter-node fast file transfer 
Nexus is used for collective communications and HBM for heartbeat monitoring of resource nodes. GridFTP is for 

speeding up internode file transfers. The module GASS is used for global access of secondary storage. More details 

of the functional modules of Globus GT4 and their applications are available at www.globus.org/toolkit/. 

 

Globus Job Workflow 

 

The typical job workflow when using the Globus tools. A typical job execution sequence proceeds as follows: The 

user delegates his credentials to a delegation service. The user submits a job request to GRAM with the delegation 

identifier as a parameter. GRAM parses the request, retrieves the user proxy certificate from the delegation service, 

and then acts on behalf of the user. GRAM sends a transfer request to the RFT (Reliable File Transfer), which 

applies GridFTP to bring in the necessary files. GRAM invokes a local scheduler via a GRAM adapter and the SEG 

(Scheduler Event Generator) initiates a set of user jobs. The local scheduler reports the job state to the SEG. Once 

the job is complete, GRAM uses RFT and GridFTP to stage out the resultant files. The grid monitors the progress of 

these operations and sends the user a notification when they succeed, fail, or are delayed. 
 

 

Globus job workflow among interactive functional modules. 

 

Client-Globus Interactions 
 

http://www.globus.org/toolkit/
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GT4 service programs are designed to support user applications .There are strong interactions between provider 

programs and user code. GT4 makes heavy use of industry-standard web service protocols and mechanisms in 

service description, discovery, access, authentication, authorization, and the like. 
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GT4 provides a set of infrastructure services for accessing, monitoring, managing, and controlling access to 

infrastructure elements. The server code in the vertical boxes in corresponds to 15 grid services that are in heavy use 

in the GT4 library. These demand computational, communication, data, and storage resources. We must enable a 

range of end-user tools that provide the higher-level capabilities needed in specific user applications. 
 

 

A high-security subsystem addresses message protection, authentication, delegation, and authorization. Comprising 

both a set of service implementations and associated client libraries at the top, GT4 provides both web services and 

non-WS applications. The horizontal boxes in the client domain denote custom applications and/or third-party tools 

that access GT4 services. The toolkit programs provide a set of useful infrastructure services. Globus container 

serving as a runtime environment for implementing web services in a grid platform. Courtesy of Foster and 

Kesselman Three containers are used to host user-developed services written in Java, Python, and C, respectively. 

These containers provide implementations of security, management, discovery, state management, and other 

mechanisms frequently required when building services. They extend open source service hosting environments 

with support for a range of useful web service specifications, including WSRF, WS-Notification, and WS-Security. 

A set of client libraries allow client programs in Java, C, and Python to invoke operations on both GT4 and user- 

developed services. In many cases, multiple interfaces provide different levels of control: 

 
 

Consider a distributed computing system consisting of a set of networked nodes or workers. The system 

issues for running a typical parallel program in either a parallel or a distributed manner would include the 

following : 

• Partitioning This is applicable to both computation and data as follows: 

• Computation partitioning This splits a given job or a program into smaller tasks. Partitioning greatly 



 

NARAYANA ENGINEERING COLLEGE::GUDUR                          Prepared By Mr.U.Satyanarayana 

 

depends on correctly identifying portions of the job or program that can be performed concurrently. In 

other words, upon identifying parallelism in the structure of the program, it can be divided into parts to be 

run on different workers. Different parts may process different data or a copy of the same data. 

• Data partitioning This splits the input or intermediate data into smaller pieces. Similarly, upon 

identification of parallelism in the input data, it can also be divided into pieces to be processed on 
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different workers. Data pieces may be processed by different parts of a program or a copy of the same 

program. 

• Mapping This assigns the either smaller parts of a program or the smaller pieces of data to underlying 

resources. This process aims to appropriately assign such parts or pieces to be run simultaneously on 

different workers and is usually handled by resource allocators in the system. 

• Synchronization Because different workers may perform different tasks, synchronization and 

coordination among workers is necessary so that race conditions are prevented and data dependency 

among different workers is properly managed. 

Multiple accesses to a shared resource by different workers may raise race conditions, whereas data 

dependency happens when a worker needs the processed data of other workers. 

• Communication because data dependency is one of the main reasons for communication among 

workers, communication is always triggered when the intermediate data is sent to workers. 

• Scheduling For a job or program, when the number of computation parts (tasks) or data pieces is more 

than the number of available workers, a scheduler selects a sequence of tasks or data pieces to be assigned 

to the workers. It is worth noting that the resource allocator performs the actual mapping of the 

computation or data pieces to workers, while the scheduler only picks the next part from the queue of 

unassigned tasks based on a set of rules called the scheduling policy. For multiple jobs or programs, a 

scheduler selects a sequence of jobs or programs to be run on the distributed computing system. In this 

case, scheduling is also necessary when system resources are not sufficient to simultaneously run multiple 

jobs or programs. 

Motivation for Programming Paradigms 

Because handling the whole data flow of parallel and distributed programming is very time-consuming 

and requires specialized knowledge of programming, dealing with these issues may affect the productivity 

of the programmer and may even result in affecting the program’s time to market. Furthermore, it may 

detract the programmer from concentrating on the logic of the program itself. Therefore, parallel and 

distributed programming paradigms or models are offered to abstract many parts of the data flow from 

users. 

 

In other words, these models aim to provide users with an abstraction layer to hide implementation details 

of the data flow which users formerly ought to write codes for. Therefore, simplicity of writing parallel 

programs is an important metric for parallel and distributed programming paradigms. Other motivations 

behind parallel and distributed programming models are (1) to improve productivity of programmers, (2) 

to decrease programs’ time to market, (3) to leverage underlying resources more efficiently, (4) to 

increase system throughput, and (5) to support higher levels of abstraction . 

HADOOP LIBRARY FROM APACHE 

Hadoop is an open source implementation of MapReduce coded and released in Java (rather than C) by 

Apache. The Hadoop implementation of MapReduce uses the Hadoop Distributed File System (HDFS) as 

its underlying layer rather than GFS. The Hadoop core is divided into two fundamental layers: the 

MapReduce engine and HDFS. The MapReduce engine is the computation engine running on top of 

HDFS as its data storage manager. The following two sections cover the details of these two fundamental 

layers. HDFS: HDFS is a distributed file system inspired by GFS that organizes files and stores their data 

on a distributed computing system. 
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HDFS Architecture: HDFS has a master/slave architecture containing a single NameNode as the master and 

a number of DataNodes as workers (slaves). To store a file in this architecture, HDFS splits the file into fixed-size 

blocks (e.g., 64 MB) and stores them on workers (DataNodes). The mapping of blocks to DataNodes is determined 
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by the NameNode. The NameNode (master) also manages the file system’s metadata and namespace. In such 

systems, the namespace is the area maintaining the metadata, and metadata refers to all the information stored by a 

file system that is needed for overall management of all files. For example, NameNode in the metadata stores all 

information regarding the location of input splits/blocks in all DataNodes. Each DataNode, usually one per node in a 

cluster, manages the storage attached to the node. Each DataNode is responsible for storing and retrieving its file 

blocks . 
 

 

HDFS Features: Distributed file systems have special requirements, such as performance, scalability, 

concurrency control, fault tolerance, and security requirements , to operate efficiently HDFS Fault 

Tolerance: One of the main aspects of HDFS is its fault tolerance characteristic. Since Hadoop is 

designed to be deployed on low-cost hardware by default. 

• Block replication To reliably store data in HDFS, file blocks are replicated in this system. 
• Replica placement The placement of replicas is another factor to fulfill the desired fault tolerance in 

HDFS. Although storing replicas on different nodes (DataNodes) located in different racks across the 

whole cluster provides more reliability, Therefore, sometimes HDFS compromises its reliability to 

achieve lower communication costs 

• Heartbeat and Blockreport messages Heartbeats and Blockreports are periodic messages sent to the 

NameNode by each DataNode in a cluster. Receipt of a Heartbeat implies that the DataNode is 

functioning properly, while each Blockreport contains a list of all blocks on a DataNode. The NameNode 

receives such messages because it is the sole decision maker of all replicas in the system. 

HDFS Operation: The control flow of HDFS operations such as write and read can properly highlight 

roles of the NameNode and DataNodes in the managing operations. In this section, the control flow of the 

main operations of HDFS on files is further described to manifest the interaction between the user, the 

NameNode, and the DataNodes in such systems . 
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• Reading a file To read a file in HDFS, a user sends an ―open‖ request to the NameNode to get the location of file 

blocks. For each file block, the NameNode returns the address of a set of DataNodes containing replica information 
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for the requested file. The number of addresses depends on the number of block replicas. Upon receiving such 

information, the user calls the read function to connect to the closest DataNode containing the first block of the file. 

After the first block is streamed from the respective DataNode to the user, the established connection is terminated 

and the same process is repeated for all blocks of the requested file until the whole file is streamed to the user. 
 

• Writing to a file To write a file in HDFS, a user sends a ―create‖ request to the NameNode to create a new file in 

the file system namespace. If the file does not exist, the NameNode notifies the user and allows him to start writing 

data to the file by calling the write function. The first block of the file is written to an internal queue termed the data 

queue while a data streamer monitors its writing into a DataNode. Since each file block needs to be replicated by a 

predefined factor, the data streamer first sends a request to the NameNode to get a list of suitable DataNodes to store 

replicas of the first block. 

 

The steamer then stores the block in the first allocated DataNode. Afterward, the block is forwarded to the 

second DataNode by the first DataNode. The process continues until all allocated DataNodes receive a 

replica of the first block from the previous DataNode. 

Once this replication process is finalized, the same process starts for the second block and continues until 

all blocks of the file are stored and replicated on the file system. 

 
MapReduce, Twister, and Iterative MapReduce 

 

MapReduce, is a software framework which supports parallel and distributed computing on large data sets 

. This software framework abstracts the data flow of running a parallel program on a distributed 

computing system by providing users with two interfaces in the form of two functions: 

Map and Reduce. Users can override these two functions to interact with and manipulate the data flow of 

running their programs illustrates the logical data flow from the Map to the Reduce function in 

MapReduce frameworks. In this framework, the ―value‖ part of the data, (key, value), is the actual data, 

and the ―key‖ part is only used by the MapReduce controller to control the data flow . 
Formal Definition of MapReduce 

 

The MapReduce software framework provides an abstraction layer with the data flow and flow of control to users, 

and hides the implementation of all data flow steps such as data partitioning, mapping, synchronization, 

communication, and scheduling. Map and Reduce . These two main functions can be overridden by the user to 

achieve specific objectives the MapReduce framework with data flow and control flow.Therefore, the user overrides 

the Map and Reduce functions first and then invokes the provided MapReduce (Spec, & Results) function from the 

library to start the flow of data. The MapReduce function, MapReduce (Spec, & Results), takes an important 

parameter which is a specification object, the Spec. This object is first initialized inside the user’s program, and then 

the user writes code to fill it with the names of input and output files, as well as other optional tuning parameters. 

This object is also filled with the name of the Map and Reduce functions to identify these user-defined functions to 

the MapReduce library. 

 

The overall structure of a user’s program containing the Map, Reduce, and the Main functions is given 

below. 



 

NARAYANA ENGINEERING COLLEGE::GUDUR                          Prepared By Mr.U.Satyanarayana 

 

Map Function (… . ) 

{ 

… … 

} 

Reduce Function (… . ) 

{ 
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… … 

} 

Main Function (… . ) 

{ 

Initialize Spec object 

… … 

MapReduce (Spec, & Results) 

} 
MapReduce Logical Data Flow 

 

The input data to both the Map and the Reduce functions has a particular structure. This also pertains for the output 

data. The input data to the Map function is in the form of a (key, value) pair. For example, the key is the line offset 

within the input file and the value is the content of the line. The output data from the Map function is structured as 

(key, value) pairs called intermediate (key, value) pairs. In other words, the user-defined Map function processes 

each input (key, value) pair and produces a number of (zero, one, or more) intermediate (key, value) pairs. Here, the 

goal is to process all input (key, value) pairs to the Map function in parallel. 

 

one of the well-known MapReduce problems, namely word count, to count the number of occurrences of 

each word in a collection of documents is presented here demonstrates the data flow of the word-count problem for a 

simple input file containing only two lines as follows: (1) ―most people ignore most poetry‖ and (2) ―most poetry 

ignores most people.‖ In this case, the Map function simultaneously produces a number of intermediate (key, value) 

pairs for each line of content so that each word is the intermediate key with 1 as its intermediate value; for example, 

(ignore, 1). Then the MapReduce library collects all the generated intermediate (key, value) pairs and sorts them to 

group the 1’s for identical words; for example, (people, [1,1]). 

 

The data flow of a word-count problem using the MapReduce functions (Map, Sort, Group and Reduce) 

in a cascade operations. 

Problem 1: Counting the number of occurrences of each word in a collection of documents 

Solution: unique ―key‖: each word, intermediate ―value‖: number of occurrences 

Problem 2: Counting the number of occurrences of words having the same size, or the same number of 

letters, in a collection of documents 

Solution: unique ―key‖: each word, intermediate ―value‖: size of the word 
Problem 3: Counting the number of occurrences of anagrams in a collection of documents. Anagrams are 

words with the same set of letters but in a different order (e.g., the words ―listen‖ and ―silent‖). 

Solution: unique ―key‖: alphabetically sorted sequence of letters for each word (e.g., eilnst‖), 

intermediate ―value‖: number of occurrences 
Running a Job in Hadoop 

 

Three components contribute in running a job in this system: a user node, a JobTracker, and several TaskTrackers. 

The data flow starts by calling the runJob(conf) function inside a user program running on the user node, in which 

conf is an object containing some tuning parameters for the MapReduce framework and HDFS. The runJob(conf) 

function and conf are comparable to the MapReduce(Spec, &Results) function and Spec in the first implementation 

of MapReduce by Google, depicts the data flow of running a MapReduce job in Hadoop . Data flow in running a 

MapReduce job at various task trackers using the Hadoop library. 
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• Job Submission Each job is submitted from a user node to the JobTracker node that might be situated in 

a different node within the cluster through the following procedure: 

• A user node asks for a new job ID from the JobTracker and computes input file splits. 
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• The user node copies some resources, such as the job’s JAR file, configuration file, and computed input 

splits, to the JobTracker’s file system. 

• The user node submits the job to the JobTracker by calling the submitJob() function. 

• Task assignment The JobTracker creates one map task for each computed input split by the user node 

and assigns the map tasks to the execution slots of the TaskTrackers. 

The JobTracker considers the localization of the data when assigning the map tasks to the TaskTrackers. 

The JobTracker also creates reduce tasks and assigns them to the TaskTrackers. The number of reduce 

tasks is predetermined by the user, and there is no locality consideration in assigning them. 

• Task execution The control flow to execute a task (either map or reduce) starts inside the TaskTracker 

by copying the job JAR file to its file system. Instructions inside the job JAR file are executed after 

launching a Java Virtual Machine (JVM) to run its map or reduce task. 

• Task running check A task running check is performed by receiving periodic heartbeat messages to the 

JobTracker from the TaskTrackers. Each heartbeat notifies the JobTracker that the sending TaskTracker is 

alive, and whether the sending TaskTracker is ready to run a new task. 
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UNIT V 

 

TRUST MODELS FOR GRID SECURITY ENFORCEMENT 
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Many potential security issues may occur in a grid environment if qualified security mechanisms are not in place. 

These issues include network sniffers, out-of-control access, faulty operation, malicious operation, integration of 

local security mechanisms, delegation, dynamic resources and services, attack provenance, and so on. 

Computational grids are motivated by the desire to share processing resources among many organizations to solve 

large-scale problems. Indeed, grid sites may exhibit unacceptable security conditions and system vulnerabilities. 

 

On the one hand, a user job demands the resource site to provide security assurance by issuing a security demand 

(SD). On the other hand, the site needs to reveal its trustworthiness, called its trust index (TI). These two parameters 

must satisfy a security-assurance condition: TI ≥ SD during the job mapping process. When determining its security 

demand, users usually care about some typical attributes. These attributes and their values are dynamically changing 

and depend heavily on the trust model, security policy, accumulated reputation, self-defense capability, attack 

history, and site vulnerability. Three challenges are outlined below to establish the trust among grid sites . 

 

The first challenge is integration with existing systems and technologies. The resources sites in a grid are usually 

heterogeneous and autonomous. It is unrealistic to expect that a single type of security can be compatible with and 

adopted by every hosting environment. At the same time, existing security infrastructure on the sites cannot be 

replaced overnight. Thus, to be successful, grid security architecture needs to step up to the challenge of integrating 

with existing security architecture and models across platforms and hosting environments. 

 

The second challenge is interoperability with different ―hosting environments.‖Services are often invoked across 

multiple domains, and need to be able to interact with one another. The interoperation is demanded at the protocol, 

policy, and identity levels. 

 

For all these levels, interoperation must be protected securely. The third challenge is to construct trust relationships 

among interacting hosting environments. Grid service requests can be handled by combining resources on multiple 

security domains. Trust relationships are required by these domains during the end-to-end traversals. A service 

needs to be open to friendly and interested entities so that they can submit requests and access securely. 

 

Resource sharing among entities is one of the major goals of grid computing. A trust relationship must be 

established before the entities in the grid interoperate with one another. The entities have to choose other entities that 

can meet the requirements of trust to coordinate with. The entities that submit requests should believe the resource 

providers will try to process their requests and return the results with a specified QoS. To create the proper trust 

relationship between grid entities, two kinds of trust models are often used. One is the PKI-based model, which 

mainly exploits the PKI to authenticate and authorize entities; we will discuss this in the next section. The other is 

the reputation-based model. 

 

 

The grid aims to construct a large-scale network computing system by integrating distributed, heterogeneous, and 

autonomous resources. The security challenges faced by the grid are much greater than other computing systems. 

Before any effective sharing and cooperation occurs, a trust relationship has to be established among participants. 

 

Otherwise, not only will participants be reluctant to share their resources and services, but also the grid may cause a 

lot of damage . 

 

A Generalized Trust Model 

 

At the bottom, we identify three major factors which influence the trustworthiness of a resource site. An inference 

module is required to aggregate these factors. Followings are some existing inference or aggregation methods. An 

intra-site fuzzy inference procedure is called to assess defense capability and direct reputation. Defense capability is 

decided by the firewall, intrusion detection system (IDS), intrusion response capability, and anti-virus capacity of 

the individual resource site. Direct reputation is decided based on the job success rate, site utilization, job turnaround 

time, and job slowdown ratio measured. Recommended trust is also known as secondary trust and is obtained 
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indirectly over the grid network. 

 

A general trust model for grid computing. Courtesy of Song, Hwang, and Kwok, 2005 

 

Reputation-Based Trust Model 
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In a reputation-based model, jobs are sent to a resource site only when the site is trustworthy to meet users’ 

demands. The site trustworthiness is usually calculated from the following information: the defense capability, direct 

reputation, and recommendation trust. The defense capability refers to the site’s ability to protect itself from danger. 

It is assessed accoding to such factors as intrusion detection, firewall, response capabilities, anti-virus capacity, and 

so on. Direct reputation is based on experiences of prior jobs previously submitted to the site. The reputation is 

measured by many factors such as prior job execution success rate, cumulative site utilization, job turnaround time, 

job slowdown ratio, and so on. A positive experience associated with a site will improve its reputation. On the 

contrary, a negative experience with a site will decrease its reputation. 

 

A Fuzzy-Trust Model 

 

In this model , the job security demand (SD) is supplied by the user programs. The trust index (TI) of a resource site 

is aggregated through the fuzzy-logic inference process over all related parameters. Specifically, one can use a two- 

level fuzzy logic to estimate the aggregation of numerous trust parameters and security attributes into scalar 

quantities that are easy to use in the job scheduling and resource mapping process. 

 

The TI is normalized as a single real number with 0 representing the condition with the highest risk at a site and 1 

representing the condition which is totally risk-free or fully trusted. The fuzzy 

 

 

inference is accomplished through four steps: fuzzification, inference, aggregation, and defuzzification. The second 

salient feature of the trust model is that if a site’s trust index cannot match the job security demand (i.e., SD > TI), 

the trust model could deduce detailed security features to guide the site security upgrade as a result of tuning the 

fuzzy system. 

 

Authentication and Authorization Methods 

 

The major authentication methods in the grid include passwords, PKI, and Kerberos. The password is the simplest 

method to identify users, but the most vulnerable one to use. The PKI is the most popular method supported by GSI. 

To implement PKI, we use a trusted third party, called the certificate authority (CA). Each user applies a unique pair 

of public and private keys. The public keys are issued by the CA by issuing a certificate, after recognizing a 

legitimate user. The private key is exclusive for each user to use, and is unknown to any other users. A digital 

certificate in IEEE X.509 format consists of the user name, user public key, CA name, and a secrete signature of the 

user. The following example illustrates the use of a PKI service in a grid environment. 

 

Authorization for Access Control 

 

The authorization is a process to exercise access control of shared resources. Decisions can be made either at the 

access point of service or at a centralized place. Typically, the resource is a host that provides processors and storage 

for services deployed on it. Based on a set predefined policies or rules, the resource may enforce access for local 

services. The central authority is a special entity which is capable of issuing and revoking polices of access rights 

granted to remote accesses. The authority can be classified into three categories: attribute authorities, policy 

authorities, and identity authorities. Attribute authorities issue attribute assertions; policy authorities issue 

authorization policies; identity authorities issue certificates. The authorization server makes the final authorization 

decision. 

 

Three Authorization Models 

 

The subject is the user and the resource refers to the machine side. The subject-push model is shown at the top 

diagram. The user conducts handshake with the authority first and then with the resource site in a sequence. The 

resource-pulling model puts the resource in the middle. The user checks the resource first. Then the resource 

contacts its authority to verify the request, and the authority authorizes at step 3. Finally the resource accepts or 

rejects the request from the subject at step 4. The authorization agent model puts the authority in the middle. The 
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subject check with the authority at step 1 and the authority makes decisions on the access of the requested resources. 

The authorization process is complete at steps 3 and 4 in the reverse direction. 

 

GRID SECURITY INFRASTRUCTURE (GSI) 
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Although the grid is increasingly deployed as a common approach to constructing dynamic, interdomain, distributed 

computing and data collaborations, ―lack of security/trust between different services‖ is still an important challenge 

of the grid. The grid requires a security infrastructure with the following properties: easy to use; conforms with the 

VO’s security needs while working well with site policies of each resource provider site; and provides appropriate 

authentication and encryption of all interactions. 

 

The GSI is an important step toward satisfying these requirements. As a well-known security solution in the grid 

environment, GSI is a portion of the Globus Toolkit and provides fundamental security services needed to support 

grids, including supporting for message protection, authentication and delegation, and authorization. GSI enables 

secure authentication and communication over an open network, and permits mutual authentication across and 

among distributed sites with single sign-on capability. No centrally managed security system is required, and the 

grid maintains the integrity of its members’ local policies. GSI supports both message-level security, which supports 

the WS-Security standard and the WS-SecureConversation specification to provide message protection for SOAP 

messages, and transport-level security, which means authentication via TLS with support for X.509 proxy 

certificates. 

 

GSI Functional Layers 

 

GT4 provides distinct WS and pre-WS authentication and authorization capabilities. Both build on the same base, 

namely the X.509 standard and entity certificates and proxy certificates, which are used to identify persistent entities 

such as users and servers and to support the temporary delegation of privileges to other entities, respectively. As 

shown , GSI may be thought of as being composed of four distinct functions: message protection, authentication, 

delegation, and authorization. 

 

TLS (transport-level security) or WS-Security and WS-Secure Conversation (message-level) are used as message 

protection mechanisms in combination with SOAP. X.509 End Entity Certificates or Username and Password are 

used as authentication credentials. 

 

X.509 Proxy Certificates and WS-Trust are used for delegation. An Authorization Framework allows for a variety of 

authorization schemes, including a ―grid-mapfile‖ 

 

ACL, an ACL defined by a service, a custom authorization handler, and access to an authorization service via the 

SAML protocol. In addition, associated security tools provide for the storage of X.509 credentials (MyProxy and 

Delegation services), the mapping between GSI and other authentication mechanisms (e.g., KX509 and PKINIT for 

Kerberos, MyProxy for one-time passwords), and maintenance of information used for authorization (VOMS, 

GUMS, PERMIS). 

 

 

The remainder of this section reviews both the GT implementations of each of these functions and the standards that 

are used in these implementations. The web services portions of GT4 use SOAP as their message protocol for 

communication. Message protection can be provided either by transport-level security, which transports SOAP 

messages over TLS, or by message-level security, which is signing and/or encrypting portions of the SOAP message 

using the WS-Security standard. Here we describe these two methods. 

 

Transport-Level Security 

 

Transport-level security entails SOAP messages conveyed over a network connection protected by TLS. TLS 

provides for both integrity protection and privacy (via encryption). Transport-level security is normally used in 

conjunction with X.509 credentials for authentication, but can also be used without such credentials to provide 

message protection without authentication, often referred to as ―anonymous transport-level security.‖ In this mode 

of operation, authentication may be done by username and password in a SOAP message. 

 

Message-Level Security 
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GSI also provides message-level security for message protection for SOAP messages by implementing the WS- 

Security standard and the WS-Secure Conversation specification. 

 

The WS-Security standard from OASIS defines a framework for applying security to individual SOAP messages; 

WS-Secure Conversation is a proposed standard from IBM and Microsoft that allows for an initial exchange of 
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messages to establish a security context which can then be used to protect subsequent messages in a manner that 

requires less computational overhead (i.e., it allows the trade-off of initial overhead for setting up the session for 

lower overhead for messages). 

 

GSI conforms to this standard. GSI uses these mechanisms to provide security on a per-message basis, that is, to an 

individual message without any preexisting context between the sender and receiver (outside of sharing some set of 

trust roots). GSI, as described further in the subsequent section on authentication, allows for both X.509 public key 

credentials and the combination of username and password for authentication; however, differences still exist. With 

username/password, only the WS-Security standard can be used to allow for authentication; that is, a receiver can 

verify the identity of the communication initiator. 

 

GSI allows three additional protection mechanisms. The first is integrity protection, by which a receiver can verify 

that messages were not altered in transit from the sender. The second is encryption, by which messages can be 

protected to provide confidentiality. The third is replay prevention, by which a receiver can verify that it has not 

received the same message previously. These protections are provided between WS-Security and WS-Secure 

Conversation. The former applies the keys associated with the sender and receiver’s X.509 credentials. The X.509 

credentials are used to establish a session key that is used to provide the message protection. 

 

 

Authentication and Delegation 

 

GSI has traditionally supported authentication and delegation through the use of X.509 certificates and public keys. 

As a new feature in GT4, GSI also supports authentication through plain usernames and passwords as a deployment 

option. We discuss both methods in this section. GSI uses X.509 certificates to identify persistent users and services. 

 

As a central concept in GSI authentication, a certificate includes four primary pieces of information: (1) a subject 

name, which identifies the person or object that the certificate represents; (2) the public key belonging to the subject; 

(3) the identity of a CA that has signed the certificate to certify that the public key and the identity both belong to the 

subject; and (4) the digital signature of the named CA. X.509 provides each entity with a unique identifier (i.e., a 

distinguished name) and a method to assert that identifier to another party through the use of an asymmetric key pair 

bound to the identifier by the certificate. 

The X.509 certificate used by GSI are conformant to the relevant standards and conventions. Grid deployments 

around the world have established their own CAs based on third-party software to issue the X.509 certificate for use 

with GSI and the Globus Toolkit. GSI also supports delegation and single sign-on through the use of standard X.509 

proxy certificates. Proxy certificates allow bearers of X.509 to delegate their privileges temporarily to another entity. 

For the purposes of authentication and authorization, GSI treats certificates and proxy certificates equivalently. 

Authentication with X.509 credentials can be accomplished either via TLS, in the case of transport-level security, or 

via signature as specified by WS-Security, in the case of message-level security. 

 

Trust Delegation 

 

To reduce or even avoid the number of times the user must enter his passphrase when several grids are used or have 

agents (local or remote) requesting services on behalf of a user, GSI provides a delegation capability and a 

delegation service that provides an interface to allow clients to delegate (and renew) X.509 proxy certificates to a 

service. The interface to this service is based on the WS-Trust specification. A proxy consists of a new certificate 

and a private key. The key pair that is used for the proxy, that is, the public key embedded in the certificate and the 

private key, may either be regenerated for each proxy or be obtained by other means. The new certificate contains 

the owner’s identity, modified slightly to indicate that it is a proxy. The new certificate is signed by the owner, 

rather than a CA . 

 

A sequence of trust delegations in which new certificates are signed by the owners rather by the CA. The certificate 
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also includes a time notation after which the proxy should no longer be accepted by others. Proxies have limited 

lifetimes. Because the proxy isn’t valid for very long, it doesn’t have to stay quite as secure as the owner’s private  

key, and thus it is possible to store the proxy’s private key in a local storage system without being encrypted, as long 

as the permissions on the file prevent anyone else from looking at them easily. Once a proxy is created 
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and stored, the user can use the proxy certificate and private key for mutual authentication without entering a 

password. When proxies are used, the mutual authentication process differs slightly. The remote party receives not 

only the proxy’s certificate (signed by the owner), but also the owner’s certificate. During mutual authentication, the 

owner’s public key (obtained from her certificate) is used to validate the signature on the proxy certificate. The CA’s 

public key is then used to validate the signature on the owner’s certificate. This establishes a chain of trust from the  

CA to the last proxy through the successive owners of resources. The GSI uses WS-Security with textual usernames 

and passwords. This mechanism supports more rudimentary web service applications. When using usernames and 

passwords as opposed to X.509 credentials, the GSI provides authentication, but no advanced security features such 

as delegation, confidentiality, integrity, and replay prevention. However, one can use usernames and passwords with 

anonymous transport-level security such as unauthenticated TLS to ensure privacy. 

 

 
 

Cloud Infrastructure security: Network, host and application level 

 

Security is the most prioritized aspect for any form of computing, making it an obvious 

expectation that security issues are crucial for cloud environment as well. As the cloud 

computing approach could be associated with having users’ sensitive data stored both at clients’ 

end as well as in cloud servers, identity management and authentication are very crucial in cloud 

computing. 

 

Verification of eligible users’ credentials and protecting such credentials are part of main 

security issues in the cloud - violation in these areas could lead to undetected security breach at 

least to some extent for some period. 

 

A possible authentication scenario for a cloud infrastructure is shown in the below figure. 
 

 
Security in the Cloud 

 

The illustration presented in the figure above conveys that the authentication for the cloud users 

can be done either by the cloud service provider or the service provider can outsource the 
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identity management and authentication service to third party specialists. 

 

In the later case, the cloud service provider is required to have collaboration with the third party 

authentication specialist – the collaboration between the cloud service provider and the third 

party authentication specialist during the authentication process of cloud users is done essentially 
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through cloud. This feature adds performance overheads and security issues to the cloud context 

as the message passing between third party authentication management authority and the cloud 

service provider as part of collaboration might essentially be done through cloud infrastructure. 

 

The total authentication process and how they are carried out - regardless of the involvement of 

third party authentication specialists – is transparent to the cloud users. 

 

The illustration on the authentication scenario presented above is a fairly simple one – if 

geographically dispersed servers are deployed by the cloud service providers then the total 

authentication process might be far more complex in terms of security, underlying algorithm as 

well as performance level. 

 

Whatever is the level of complexity, the introduction of third party authentication and identity 

management specialist into any cloud architecture should have only one goal and the goal is to 

strengthen the robustness of security in the concerned area which the cloud service provider itself 

is not capable of to deploy or offer. 


